基于脑电图的脑病分级的可信度。

IF 2.3 4区 医学 Q3 CLINICAL NEUROLOGY
Ryan A Tesh, Anika Zahoor, Jayme Banks, Kaileigh Gallagher, Christine A Eckhardt, Haoqi Sun, Ioannis Karakis, Roohi Katyal, Jonathan Williams, Chetan Nayak, Aline Herlopian, Marcus C Ng, Adam S Greenblatt, Emma Meyers, Mike Westmeijer, Daniel S Harrison, Wolfgang Ganglberger, Galina Gheihman, Tracey Fan, Aaron F Struck, Irfan S Sheikh, Fábio A Nascimento, M Brandon Westover
{"title":"基于脑电图的脑病分级的可信度。","authors":"Ryan A Tesh, Anika Zahoor, Jayme Banks, Kaileigh Gallagher, Christine A Eckhardt, Haoqi Sun, Ioannis Karakis, Roohi Katyal, Jonathan Williams, Chetan Nayak, Aline Herlopian, Marcus C Ng, Adam S Greenblatt, Emma Meyers, Mike Westmeijer, Daniel S Harrison, Wolfgang Ganglberger, Galina Gheihman, Tracey Fan, Aaron F Struck, Irfan S Sheikh, Fábio A Nascimento, M Brandon Westover","doi":"10.1097/WNP.0000000000001185","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Visual EEG Confusion Assessment Method-Severity (VE-CAM-S) quantifies encephalopathy severity based on electroencephalography features. This study evaluated inter-rater reliability among experts using the VE-CAM-S scale.</p><p><strong>Methods: </strong>Nine experts from six institutions independently reviewed 32 15-second electroencephalography samples in an online test, assessing 29 features (16 in the VE-CAM-S and 13 additional, or \"VE-CAM-S+\"). A consensus of three experts served as the gold standard. Performance was measured by the median Matthews correlation coefficient between expert and gold-standard VE-CAM-S+ scores, along with average sensitivity and specificity. Qualitative analysis identified common feature-recognition errors affecting scores.</p><p><strong>Results: </strong>Experts achieved a median Matthews correlation coefficient of 0.82 [95% CI: 0.74-0.99]. Specificity exceeded 90% for most features except background β (87%) and generalized delta (71%). Sensitivity was ≥65% except for burst suppression with epileptiform activity (61%), extreme delta brush (EDB; 61%), posterior dominant rhythm (50%), background α (59%) and β (42%). Common errors included missing subtle findings, confusing features, and misidentifying extreme delta brush.</p><p><strong>Conclusions: </strong>This pilot study offers some initial support for the reliability of VE-CAM-S+ scoring. The largest errors occurred when experts missed or falsely identified features with higher weight in the VE-CAM-S. Encephalopathy grading through VE-CAM-S may be improved by breaking high-stakes features into smaller parts, creating a \"cheat sheet\" with scored examples, and designing teaching materials.</p>","PeriodicalId":15516,"journal":{"name":"Journal of Clinical Neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-Rater Reliability of EEG-Based Encephalopathy Grading.\",\"authors\":\"Ryan A Tesh, Anika Zahoor, Jayme Banks, Kaileigh Gallagher, Christine A Eckhardt, Haoqi Sun, Ioannis Karakis, Roohi Katyal, Jonathan Williams, Chetan Nayak, Aline Herlopian, Marcus C Ng, Adam S Greenblatt, Emma Meyers, Mike Westmeijer, Daniel S Harrison, Wolfgang Ganglberger, Galina Gheihman, Tracey Fan, Aaron F Struck, Irfan S Sheikh, Fábio A Nascimento, M Brandon Westover\",\"doi\":\"10.1097/WNP.0000000000001185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Visual EEG Confusion Assessment Method-Severity (VE-CAM-S) quantifies encephalopathy severity based on electroencephalography features. This study evaluated inter-rater reliability among experts using the VE-CAM-S scale.</p><p><strong>Methods: </strong>Nine experts from six institutions independently reviewed 32 15-second electroencephalography samples in an online test, assessing 29 features (16 in the VE-CAM-S and 13 additional, or \\\"VE-CAM-S+\\\"). A consensus of three experts served as the gold standard. Performance was measured by the median Matthews correlation coefficient between expert and gold-standard VE-CAM-S+ scores, along with average sensitivity and specificity. Qualitative analysis identified common feature-recognition errors affecting scores.</p><p><strong>Results: </strong>Experts achieved a median Matthews correlation coefficient of 0.82 [95% CI: 0.74-0.99]. Specificity exceeded 90% for most features except background β (87%) and generalized delta (71%). Sensitivity was ≥65% except for burst suppression with epileptiform activity (61%), extreme delta brush (EDB; 61%), posterior dominant rhythm (50%), background α (59%) and β (42%). Common errors included missing subtle findings, confusing features, and misidentifying extreme delta brush.</p><p><strong>Conclusions: </strong>This pilot study offers some initial support for the reliability of VE-CAM-S+ scoring. The largest errors occurred when experts missed or falsely identified features with higher weight in the VE-CAM-S. Encephalopathy grading through VE-CAM-S may be improved by breaking high-stakes features into smaller parts, creating a \\\"cheat sheet\\\" with scored examples, and designing teaching materials.</p>\",\"PeriodicalId\":15516,\"journal\":{\"name\":\"Journal of Clinical Neurophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNP.0000000000001185\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNP.0000000000001185","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:视觉脑电混淆严重程度评估方法(VE-CAM-S)基于脑电图特征量化脑病严重程度。本研究采用VE-CAM-S量表评估专家间的信度。方法:来自6个机构的9位专家在在线测试中独立审查了32个15秒脑电图样本,评估了29个特征(16个在VE-CAM-S中,13个额外的,或“VE-CAM-S+”)。三位专家的一致意见是金标准。通过专家和金标准VE-CAM-S+分数之间的中位数马修斯相关系数以及平均灵敏度和特异性来衡量表现。定性分析确定了影响得分的常见特征识别错误。结果:专家获得的马修斯相关系数中位数为0.82 [95% CI: 0.74-0.99]。除背景β(87%)和广义δ(71%)外,大多数特征的特异性超过90%。除癫痫样活动的爆发抑制(61%)、极端三角刷(EDB;61%),后优势节律(50%),背景α(59%)和β(42%)。常见的错误包括遗漏细微的发现,混淆特征,以及错误识别极端三角刷。结论:本初步研究为VE-CAM-S+评分的可靠性提供了初步支持。最大的错误发生在专家错过或错误地识别VE-CAM-S中权重较高的特征时。通过VE-CAM-S对脑病进行评分可以通过将高风险特征分解成更小的部分,创建带有评分示例的“小抄”以及设计教学材料来改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-Rater Reliability of EEG-Based Encephalopathy Grading.

Purpose: Visual EEG Confusion Assessment Method-Severity (VE-CAM-S) quantifies encephalopathy severity based on electroencephalography features. This study evaluated inter-rater reliability among experts using the VE-CAM-S scale.

Methods: Nine experts from six institutions independently reviewed 32 15-second electroencephalography samples in an online test, assessing 29 features (16 in the VE-CAM-S and 13 additional, or "VE-CAM-S+"). A consensus of three experts served as the gold standard. Performance was measured by the median Matthews correlation coefficient between expert and gold-standard VE-CAM-S+ scores, along with average sensitivity and specificity. Qualitative analysis identified common feature-recognition errors affecting scores.

Results: Experts achieved a median Matthews correlation coefficient of 0.82 [95% CI: 0.74-0.99]. Specificity exceeded 90% for most features except background β (87%) and generalized delta (71%). Sensitivity was ≥65% except for burst suppression with epileptiform activity (61%), extreme delta brush (EDB; 61%), posterior dominant rhythm (50%), background α (59%) and β (42%). Common errors included missing subtle findings, confusing features, and misidentifying extreme delta brush.

Conclusions: This pilot study offers some initial support for the reliability of VE-CAM-S+ scoring. The largest errors occurred when experts missed or falsely identified features with higher weight in the VE-CAM-S. Encephalopathy grading through VE-CAM-S may be improved by breaking high-stakes features into smaller parts, creating a "cheat sheet" with scored examples, and designing teaching materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Neurophysiology
Journal of Clinical Neurophysiology 医学-临床神经学
CiteScore
4.60
自引率
4.20%
发文量
198
审稿时长
6-12 weeks
期刊介绍: ​The Journal of Clinical Neurophysiology features both topical reviews and original research in both central and peripheral neurophysiology, as related to patient evaluation and treatment. Official Journal of the American Clinical Neurophysiology Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信