{"title":"结合层次图关注网络和多模态知识图的用户推荐方法。","authors":"Xiaofei Han, Xin Dou","doi":"10.3389/fnbot.2025.1587973","DOIUrl":null,"url":null,"abstract":"<p><p>In common graph neural network (GNN), although incorporating social network information effectively utilizes interactions between users, it often overlooks the deeper semantic relationships between items and fails to integrate visual and textual feature information. This limitation can restrict the diversity and accuracy of recommendation results. To address this, the present study combines knowledge graph, GNN, and multimodal information to enhance feature representations of both users and items. The inclusion of knowledge graph not only provides a better understanding of the underlying logic behind user interests and preferences but also aids in addressing the cold-start problem for new users and items. Moreover, in improving recommendation accuracy, visual and textual features of items are incorporated as supplementary information. Therefore, a user recommendation model is proposed that integrates hierarchical graph attention network with multimodal knowledge graph. The model consists of four key components: a collaborative knowledge graph neural layer, an image feature extraction layer, a text feature extraction layer, and a prediction layer. The first three layers extract user and item features, and the recommendation is completed in the prediction layer. Experimental results based on two public datasets demonstrate that the proposed model significantly outperforms existing recommendation methods in terms of recommendation performance.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1587973"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213718/pdf/","citationCount":"0","resultStr":"{\"title\":\"User recommendation method integrating hierarchical graph attention network with multimodal knowledge graph.\",\"authors\":\"Xiaofei Han, Xin Dou\",\"doi\":\"10.3389/fnbot.2025.1587973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In common graph neural network (GNN), although incorporating social network information effectively utilizes interactions between users, it often overlooks the deeper semantic relationships between items and fails to integrate visual and textual feature information. This limitation can restrict the diversity and accuracy of recommendation results. To address this, the present study combines knowledge graph, GNN, and multimodal information to enhance feature representations of both users and items. The inclusion of knowledge graph not only provides a better understanding of the underlying logic behind user interests and preferences but also aids in addressing the cold-start problem for new users and items. Moreover, in improving recommendation accuracy, visual and textual features of items are incorporated as supplementary information. Therefore, a user recommendation model is proposed that integrates hierarchical graph attention network with multimodal knowledge graph. The model consists of four key components: a collaborative knowledge graph neural layer, an image feature extraction layer, a text feature extraction layer, and a prediction layer. The first three layers extract user and item features, and the recommendation is completed in the prediction layer. Experimental results based on two public datasets demonstrate that the proposed model significantly outperforms existing recommendation methods in terms of recommendation performance.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"19 \",\"pages\":\"1587973\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213718/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2025.1587973\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1587973","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
User recommendation method integrating hierarchical graph attention network with multimodal knowledge graph.
In common graph neural network (GNN), although incorporating social network information effectively utilizes interactions between users, it often overlooks the deeper semantic relationships between items and fails to integrate visual and textual feature information. This limitation can restrict the diversity and accuracy of recommendation results. To address this, the present study combines knowledge graph, GNN, and multimodal information to enhance feature representations of both users and items. The inclusion of knowledge graph not only provides a better understanding of the underlying logic behind user interests and preferences but also aids in addressing the cold-start problem for new users and items. Moreover, in improving recommendation accuracy, visual and textual features of items are incorporated as supplementary information. Therefore, a user recommendation model is proposed that integrates hierarchical graph attention network with multimodal knowledge graph. The model consists of four key components: a collaborative knowledge graph neural layer, an image feature extraction layer, a text feature extraction layer, and a prediction layer. The first three layers extract user and item features, and the recommendation is completed in the prediction layer. Experimental results based on two public datasets demonstrate that the proposed model significantly outperforms existing recommendation methods in terms of recommendation performance.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.