CalTrig:一种基于gui的机器学习方法,用于解码自由移动啮齿动物的神经元钙瞬态。

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-07-15 Print Date: 2025-07-01 DOI:10.1523/ENEURO.0009-25.2025
Michal A Lange, Yingying Chen, Haoying Fu, Amith Korada, Changyong Guo, Yao-Ying Ma
{"title":"CalTrig:一种基于gui的机器学习方法,用于解码自由移动啮齿动物的神经元钙瞬态。","authors":"Michal A Lange, Yingying Chen, Haoying Fu, Amith Korada, Changyong Guo, Yao-Ying Ma","doi":"10.1523/ENEURO.0009-25.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in in vivo Ca<sup>2+</sup> imaging using miniature microscopes have enabled researchers to study single-neuron activity in freely moving animals. Tools such as Minian and CalmAn have been developed to convert Ca<sup>2+</sup> visual signals to numerical data, collectively referred to as CalV2N. However, substantial challenges remain in analyzing the large datasets generated by CalV2N, particularly in integrating data streams, evaluating CalV2N output quality, and reliably and efficiently identifying Ca<sup>2+</sup> transients. In this study, we introduce CalTrig, an open-source graphical user interface (GUI) tool designed to address these challenges at the post-CalV2N stage of data processing collected from C57BL/6J mice. CalTrig integrates multiple data streams, including Ca<sup>2+</sup> imaging, neuronal footprints, Ca<sup>2+</sup> traces, and behavioral tracking, and offers capabilities for evaluating the quality of CalV2N outputs. It enables synchronized visualization and efficient Ca<sup>2+</sup> transient identification. We evaluated four machine learning models (i.e., GRU, LSTM, Transformer, and Local Transformer) for Ca<sup>2+</sup> transient detection. Our results indicate that the GRU model offers the highest predictability and computational efficiency, achieving stable performance across training sessions, different animals, and even among different brain regions. The integration of manual, parameter-based, and machine learning-based detection methods in CalTrig provides flexibility and accuracy for various research applications. The user-friendly interface and low computing demands of CalTrig make it accessible to neuroscientists without programming expertise. We further conclude that CalTrig enables deeper exploration of brain function, supports hypothesis generation about neuronal mechanisms, and opens new avenues for understanding neurological disorders and developing treatments.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263099/pdf/","citationCount":"0","resultStr":"{\"title\":\"CalTrig: A GUI-Based Machine Learning Approach for Decoding Neuronal Calcium Transients in Freely Moving Rodents.\",\"authors\":\"Michal A Lange, Yingying Chen, Haoying Fu, Amith Korada, Changyong Guo, Yao-Ying Ma\",\"doi\":\"10.1523/ENEURO.0009-25.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in in vivo Ca<sup>2+</sup> imaging using miniature microscopes have enabled researchers to study single-neuron activity in freely moving animals. Tools such as Minian and CalmAn have been developed to convert Ca<sup>2+</sup> visual signals to numerical data, collectively referred to as CalV2N. However, substantial challenges remain in analyzing the large datasets generated by CalV2N, particularly in integrating data streams, evaluating CalV2N output quality, and reliably and efficiently identifying Ca<sup>2+</sup> transients. In this study, we introduce CalTrig, an open-source graphical user interface (GUI) tool designed to address these challenges at the post-CalV2N stage of data processing collected from C57BL/6J mice. CalTrig integrates multiple data streams, including Ca<sup>2+</sup> imaging, neuronal footprints, Ca<sup>2+</sup> traces, and behavioral tracking, and offers capabilities for evaluating the quality of CalV2N outputs. It enables synchronized visualization and efficient Ca<sup>2+</sup> transient identification. We evaluated four machine learning models (i.e., GRU, LSTM, Transformer, and Local Transformer) for Ca<sup>2+</sup> transient detection. Our results indicate that the GRU model offers the highest predictability and computational efficiency, achieving stable performance across training sessions, different animals, and even among different brain regions. The integration of manual, parameter-based, and machine learning-based detection methods in CalTrig provides flexibility and accuracy for various research applications. The user-friendly interface and low computing demands of CalTrig make it accessible to neuroscientists without programming expertise. We further conclude that CalTrig enables deeper exploration of brain function, supports hypothesis generation about neuronal mechanisms, and opens new avenues for understanding neurological disorders and developing treatments.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263099/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0009-25.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0009-25.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用微型显微镜进行体内Ca2+成像的进展使研究人员能够研究自由运动动物的单个神经元活动。已经开发了MiniAN和CalmAn等工具,将ca2 +视觉信号转换为数值数据,统称为CalV2N。然而,在分析由CalV2N生成的大型数据集方面仍然存在重大挑战,特别是在整合数据流,评估CalV2N输出质量以及可靠有效地识别Ca2+瞬态方面。在本研究中,我们介绍了CalTrig,一个开源的图形用户界面(GUI)工具,旨在解决从C57BL/6J小鼠收集的数据处理后calv2n阶段的这些挑战。CalTrig集成了多个数据流,包括Ca2+成像、神经元足迹、Ca2+痕迹和行为跟踪,并提供了评估CalV2N输出质量的能力。它可以实现同步可视化和高效的Ca2+瞬态识别。我们评估了四种机器学习模型(即GRU, LSTM, Transformer和Local Transformer)用于Ca2+瞬态检测。我们的研究结果表明,GRU模型提供了最高的可预测性和计算效率,在不同的训练阶段,不同的动物,甚至不同的大脑区域之间实现了稳定的性能。CalTrig中人工、基于参数和基于机器学习的检测方法的集成为各种研究应用提供了灵活性和准确性。用户友好的界面和低计算需求使得没有编程专业知识的神经科学家也可以使用CalTrig。我们进一步得出结论,CalTrig可以更深入地探索大脑功能,支持关于神经元机制的假设生成,并为理解神经系统疾病和开发治疗开辟了新的途径。理解单细胞水平的神经元活动对于揭示行为和神经系统疾病背后的大脑机制至关重要。CalTrig是一种新型的基于gui的工具,它将机器学习与Ca2+成像分析相结合,以解决处理来自自由移动啮齿动物的复杂、大规模神经数据的关键挑战。通过提供同步可视化和灵活的Ca2+瞬态检测,CalTrig使没有编程专业知识的研究人员能够提取对大脑功能有意义的见解。该工具的适应性和计算效率支持多种研究应用,从行为神经科学到转化研究。简而言之,CalTrig提高了Ca2+瞬态分析的精度和可扩展性,为更深入地探索神经元动力学和促进神经科学研究的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CalTrig: A GUI-Based Machine Learning Approach for Decoding Neuronal Calcium Transients in Freely Moving Rodents.

Advances in in vivo Ca2+ imaging using miniature microscopes have enabled researchers to study single-neuron activity in freely moving animals. Tools such as Minian and CalmAn have been developed to convert Ca2+ visual signals to numerical data, collectively referred to as CalV2N. However, substantial challenges remain in analyzing the large datasets generated by CalV2N, particularly in integrating data streams, evaluating CalV2N output quality, and reliably and efficiently identifying Ca2+ transients. In this study, we introduce CalTrig, an open-source graphical user interface (GUI) tool designed to address these challenges at the post-CalV2N stage of data processing collected from C57BL/6J mice. CalTrig integrates multiple data streams, including Ca2+ imaging, neuronal footprints, Ca2+ traces, and behavioral tracking, and offers capabilities for evaluating the quality of CalV2N outputs. It enables synchronized visualization and efficient Ca2+ transient identification. We evaluated four machine learning models (i.e., GRU, LSTM, Transformer, and Local Transformer) for Ca2+ transient detection. Our results indicate that the GRU model offers the highest predictability and computational efficiency, achieving stable performance across training sessions, different animals, and even among different brain regions. The integration of manual, parameter-based, and machine learning-based detection methods in CalTrig provides flexibility and accuracy for various research applications. The user-friendly interface and low computing demands of CalTrig make it accessible to neuroscientists without programming expertise. We further conclude that CalTrig enables deeper exploration of brain function, supports hypothesis generation about neuronal mechanisms, and opens new avenues for understanding neurological disorders and developing treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信