纳米增强的百里醌:超越抗生素抑制金黄色葡萄球菌生物膜。

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biofouling Pub Date : 2025-08-01 Epub Date: 2025-07-02 DOI:10.1080/08927014.2025.2526210
Nirmeen Aboelnaga, Sama S Eltaher, Nehal A Saif, Omar Loay, Ahmed Abd El-Rahman, Abanoub Haroun, Clara Hakim, Manar Elsayed, Nayera E Attallah, Hossam B El-Geneidy, Maha Nasr, Mohamed Elhadidy
{"title":"纳米增强的百里醌:超越抗生素抑制金黄色葡萄球菌生物膜。","authors":"Nirmeen Aboelnaga, Sama S Eltaher, Nehal A Saif, Omar Loay, Ahmed Abd El-Rahman, Abanoub Haroun, Clara Hakim, Manar Elsayed, Nayera E Attallah, Hossam B El-Geneidy, Maha Nasr, Mohamed Elhadidy","doi":"10.1080/08927014.2025.2526210","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> is a high-priority pathogen requiring novel antimicrobial strategies. Thymoquinone (TQ), a bioactive compound from <i>Nigella sativa</i>, exhibits antimicrobial and antibiofilm properties, but its precise mechanisms remain unclear. This study evaluated free and nano-encapsulated TQ against multidrug-resistant <i>S. aureus</i> isolates. Nano-encapsulation enhanced biofilm penetration, with TQ significantly reducing extracellular DNA (eDNA) at sub-MIC levels without affecting initial adhesion, exopolysaccharides, or enzymatic virulence. Comparative analysis with vancomycin, ciprofloxacin, and azithromycin confirmed TQ's potent antibiofilm activity. Notably, TQ downregulated <i>crtN</i>, essential for staphyloxanthin biosynthesis, and <i>msaB</i>, a key biofilm and stress response regulator. However, at MIC and super-MIC levels, TQ paradoxically increased staphyloxanthin, suggesting a concentration-dependent oxidative stress response. We propose that TQ disrupts biofilm integrity by modulating the <i>msaABCR</i> operon. These findings highlight nano-TQ's therapeutic potential for biofilm-associated infections and underscore the role of natural compounds in combating multidrug-resistant pathogens.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"676-695"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-boosted thymoquinone: moving beyond antibiotics to inhibit <i>Staphylococcus aureus</i> biofilms.\",\"authors\":\"Nirmeen Aboelnaga, Sama S Eltaher, Nehal A Saif, Omar Loay, Ahmed Abd El-Rahman, Abanoub Haroun, Clara Hakim, Manar Elsayed, Nayera E Attallah, Hossam B El-Geneidy, Maha Nasr, Mohamed Elhadidy\",\"doi\":\"10.1080/08927014.2025.2526210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Staphylococcus aureus</i> is a high-priority pathogen requiring novel antimicrobial strategies. Thymoquinone (TQ), a bioactive compound from <i>Nigella sativa</i>, exhibits antimicrobial and antibiofilm properties, but its precise mechanisms remain unclear. This study evaluated free and nano-encapsulated TQ against multidrug-resistant <i>S. aureus</i> isolates. Nano-encapsulation enhanced biofilm penetration, with TQ significantly reducing extracellular DNA (eDNA) at sub-MIC levels without affecting initial adhesion, exopolysaccharides, or enzymatic virulence. Comparative analysis with vancomycin, ciprofloxacin, and azithromycin confirmed TQ's potent antibiofilm activity. Notably, TQ downregulated <i>crtN</i>, essential for staphyloxanthin biosynthesis, and <i>msaB</i>, a key biofilm and stress response regulator. However, at MIC and super-MIC levels, TQ paradoxically increased staphyloxanthin, suggesting a concentration-dependent oxidative stress response. We propose that TQ disrupts biofilm integrity by modulating the <i>msaABCR</i> operon. These findings highlight nano-TQ's therapeutic potential for biofilm-associated infections and underscore the role of natural compounds in combating multidrug-resistant pathogens.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"676-695\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2025.2526210\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2526210","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金黄色葡萄球菌是一种高度优先的病原体,需要新的抗菌策略。百里醌(Thymoquinone, TQ)是一种来自黑草(Nigella sativa)的生物活性化合物,具有抗菌和抗生物膜的特性,但其确切机制尚不清楚。本研究评估了游离和纳米封装TQ对耐多药金黄色葡萄球菌分离株的作用。纳米胶囊化增强了生物膜的渗透,TQ显著降低了亚mic水平的细胞外DNA (eDNA),而不影响初始粘附、外多糖或酶毒力。与万古霉素、环丙沙星和阿奇霉素的比较分析证实了TQ具有较强的抗膜活性。值得注意的是,TQ下调了葡萄黄质生物合成所必需的crtN和关键的生物膜和应激反应调节因子msaB。然而,在MIC和超MIC水平下,TQ反而增加了葡萄黄质,表明这是一种浓度依赖性的氧化应激反应。我们认为TQ通过调节msaABCR操纵子来破坏生物膜的完整性。这些发现突出了纳米tq治疗生物膜相关感染的潜力,并强调了天然化合物在对抗多药耐药病原体中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano-boosted thymoquinone: moving beyond antibiotics to inhibit Staphylococcus aureus biofilms.

Staphylococcus aureus is a high-priority pathogen requiring novel antimicrobial strategies. Thymoquinone (TQ), a bioactive compound from Nigella sativa, exhibits antimicrobial and antibiofilm properties, but its precise mechanisms remain unclear. This study evaluated free and nano-encapsulated TQ against multidrug-resistant S. aureus isolates. Nano-encapsulation enhanced biofilm penetration, with TQ significantly reducing extracellular DNA (eDNA) at sub-MIC levels without affecting initial adhesion, exopolysaccharides, or enzymatic virulence. Comparative analysis with vancomycin, ciprofloxacin, and azithromycin confirmed TQ's potent antibiofilm activity. Notably, TQ downregulated crtN, essential for staphyloxanthin biosynthesis, and msaB, a key biofilm and stress response regulator. However, at MIC and super-MIC levels, TQ paradoxically increased staphyloxanthin, suggesting a concentration-dependent oxidative stress response. We propose that TQ disrupts biofilm integrity by modulating the msaABCR operon. These findings highlight nano-TQ's therapeutic potential for biofilm-associated infections and underscore the role of natural compounds in combating multidrug-resistant pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信