真核生物端粒结构的比较。

Q3 Veterinary
Archives of Razi Institute Pub Date : 2024-12-31 eCollection Date: 2024-12-01 DOI:10.32592/ARI.2024.79.6.1365
S Mansoubi, M Mohsenpour
{"title":"真核生物端粒结构的比较。","authors":"S Mansoubi, M Mohsenpour","doi":"10.32592/ARI.2024.79.6.1365","DOIUrl":null,"url":null,"abstract":"<p><p>Telomeres are DNA-protein complexes that are located at the ends of eukaryotic chromosomes. The fusion of broken chromosome ends is prevented by the presence of telomeres, which act to inhibit this process. This specific function of telomeres serves to distinguish normal chromosome ends from double-stranded breaks in DNA. Telomeres contain a series of short, repeated sequences arranged in a tandem array. The number of repeats varies between different organisms, with a range of 20 to 1,000 repeats being typical. A G-rich strand is replicated by lagging strand synthesis, which creates a 3' overhang. In addition, a complementary C-rich strand is replicated by leading strand synthesis. The objective of this study is to undertake a comparative analysis of the structure of telomeres in Saccharomyces cerevisiae, Saccharomyces pombe and mammals. In Saccharomyces cerevisiae, the Rap1 protein binds to the double-stranded telomeric sequences, as well as to the Rif1 and Rif2 proteins, which regulate telomere length. Cdc13 and the Cdc13-interacting factors Ten1 and Stn1 bind to the single-stranded overhang. In Saccharomyces pombe telomeres, Taz1 binds to the double-stranded DNA (dsDNA), and Rap1 and Rif1 also bind to the ds region via Taz1. Pot1 interacts with Tpz1, forming a complex that binds to the 3' overhang. The protein Poz1 serves to connect the dsDNA binding complex, comprising Taz1 and Rap1, to the ssDNA binding complex, which includes Pot1 and Tpz1. Furthermore, Ccq1 interacts with Tpz1 and facilitates the recruitment of telomerase. The Stn1/Ten1 complex exhibits a binding affinity for a single-stranded telomere. In mammalian telomeres, the shelterin complex that binds double-stranded telomeric DNA is composed of six subunits. The double-stranded telomeric DNA is bound by TRF1 and TRF2. TPP1 and POT1 are capable of binding single-stranded DNA. TIN2 serves to connect the dsDNA binding complex TRF1/TRF2 to the ssDNA binding complex POT1/TPP1. Rap1 binds to the telomere by interacting with TRF1 and TRF2. Moreover, this study will address the regulation and comparison of the shelterin complex. Additionally, in mammals, the activation of DNA damage response pathways is necessary when double-strand DNA is broken. This, in turn, elucidates the specific repair pathways that are employed. We conclude by discussing the T-loop structure, as telomeres in several species have been shown to fold back into a structure called a T-loop, which is believed to mediate telomere protection.</p>","PeriodicalId":8311,"journal":{"name":"Archives of Razi Institute","volume":"79 6","pages":"1365-1374"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214437/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Telomere Structure in Eukaryotes.\",\"authors\":\"S Mansoubi, M Mohsenpour\",\"doi\":\"10.32592/ARI.2024.79.6.1365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Telomeres are DNA-protein complexes that are located at the ends of eukaryotic chromosomes. The fusion of broken chromosome ends is prevented by the presence of telomeres, which act to inhibit this process. This specific function of telomeres serves to distinguish normal chromosome ends from double-stranded breaks in DNA. Telomeres contain a series of short, repeated sequences arranged in a tandem array. The number of repeats varies between different organisms, with a range of 20 to 1,000 repeats being typical. A G-rich strand is replicated by lagging strand synthesis, which creates a 3' overhang. In addition, a complementary C-rich strand is replicated by leading strand synthesis. The objective of this study is to undertake a comparative analysis of the structure of telomeres in Saccharomyces cerevisiae, Saccharomyces pombe and mammals. In Saccharomyces cerevisiae, the Rap1 protein binds to the double-stranded telomeric sequences, as well as to the Rif1 and Rif2 proteins, which regulate telomere length. Cdc13 and the Cdc13-interacting factors Ten1 and Stn1 bind to the single-stranded overhang. In Saccharomyces pombe telomeres, Taz1 binds to the double-stranded DNA (dsDNA), and Rap1 and Rif1 also bind to the ds region via Taz1. Pot1 interacts with Tpz1, forming a complex that binds to the 3' overhang. The protein Poz1 serves to connect the dsDNA binding complex, comprising Taz1 and Rap1, to the ssDNA binding complex, which includes Pot1 and Tpz1. Furthermore, Ccq1 interacts with Tpz1 and facilitates the recruitment of telomerase. The Stn1/Ten1 complex exhibits a binding affinity for a single-stranded telomere. In mammalian telomeres, the shelterin complex that binds double-stranded telomeric DNA is composed of six subunits. The double-stranded telomeric DNA is bound by TRF1 and TRF2. TPP1 and POT1 are capable of binding single-stranded DNA. TIN2 serves to connect the dsDNA binding complex TRF1/TRF2 to the ssDNA binding complex POT1/TPP1. Rap1 binds to the telomere by interacting with TRF1 and TRF2. Moreover, this study will address the regulation and comparison of the shelterin complex. Additionally, in mammals, the activation of DNA damage response pathways is necessary when double-strand DNA is broken. This, in turn, elucidates the specific repair pathways that are employed. We conclude by discussing the T-loop structure, as telomeres in several species have been shown to fold back into a structure called a T-loop, which is believed to mediate telomere protection.</p>\",\"PeriodicalId\":8311,\"journal\":{\"name\":\"Archives of Razi Institute\",\"volume\":\"79 6\",\"pages\":\"1365-1374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Razi Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32592/ARI.2024.79.6.1365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Razi Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32592/ARI.2024.79.6.1365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 0

摘要

端粒是位于真核生物染色体末端的dna -蛋白质复合物。断裂染色体末端的融合被端粒的存在所阻止,端粒的作用是抑制这一过程。端粒的这种特殊功能用于区分正常的染色体末端和DNA中的双链断裂。端粒包含一系列短而重复的序列,排列成串联阵列。不同生物体的重复次数不同,典型的重复次数在20到1000次之间。富含g的链通过滞后链合成复制,从而产生3'悬垂。另外,一个互补的富含c的链通过先导链合成被复制。本研究的目的是对酿酒酵母、pombe酵母和哺乳动物的端粒结构进行比较分析。在酿酒酵母中,Rap1蛋白结合双链端粒序列,以及调节端粒长度的Rif1和Rif2蛋白。Cdc13和与Cdc13相互作用的因子Ten1和Stn1结合到单链悬垂上。在pombe酵母端粒中,Taz1与双链DNA (dsDNA)结合,Rap1和Rif1也通过Taz1与ds区结合。Pot1与Tpz1相互作用,形成一个与3'悬垂结合的复合体。蛋白质Poz1用于连接dsDNA结合复合体(包括Taz1和Rap1)和ssDNA结合复合体(包括Pot1和Tpz1)。此外,Ccq1与Tpz1相互作用,促进端粒酶的募集。Stn1/Ten1复合物对单链端粒具有结合亲和力。在哺乳动物端粒中,结合双链端粒DNA的庇护蛋白复合物由六个亚基组成。双链端粒DNA由TRF1和TRF2结合。TPP1和POT1能够结合单链DNA。TIN2用于连接dsDNA结合复合体TRF1/TRF2和ssDNA结合复合体POT1/TPP1。Rap1通过与TRF1和TRF2相互作用结合到端粒上。此外,本研究还将探讨庇护复合物的调控和比较。此外,在哺乳动物中,当双链DNA断裂时,DNA损伤反应途径的激活是必要的。这反过来又阐明了所采用的特定修复途径。我们最后讨论了t环结构,因为一些物种的端粒已经被证明可以折叠成一种叫做t环的结构,这种结构被认为是端粒保护的中介。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Telomere Structure in Eukaryotes.

Telomeres are DNA-protein complexes that are located at the ends of eukaryotic chromosomes. The fusion of broken chromosome ends is prevented by the presence of telomeres, which act to inhibit this process. This specific function of telomeres serves to distinguish normal chromosome ends from double-stranded breaks in DNA. Telomeres contain a series of short, repeated sequences arranged in a tandem array. The number of repeats varies between different organisms, with a range of 20 to 1,000 repeats being typical. A G-rich strand is replicated by lagging strand synthesis, which creates a 3' overhang. In addition, a complementary C-rich strand is replicated by leading strand synthesis. The objective of this study is to undertake a comparative analysis of the structure of telomeres in Saccharomyces cerevisiae, Saccharomyces pombe and mammals. In Saccharomyces cerevisiae, the Rap1 protein binds to the double-stranded telomeric sequences, as well as to the Rif1 and Rif2 proteins, which regulate telomere length. Cdc13 and the Cdc13-interacting factors Ten1 and Stn1 bind to the single-stranded overhang. In Saccharomyces pombe telomeres, Taz1 binds to the double-stranded DNA (dsDNA), and Rap1 and Rif1 also bind to the ds region via Taz1. Pot1 interacts with Tpz1, forming a complex that binds to the 3' overhang. The protein Poz1 serves to connect the dsDNA binding complex, comprising Taz1 and Rap1, to the ssDNA binding complex, which includes Pot1 and Tpz1. Furthermore, Ccq1 interacts with Tpz1 and facilitates the recruitment of telomerase. The Stn1/Ten1 complex exhibits a binding affinity for a single-stranded telomere. In mammalian telomeres, the shelterin complex that binds double-stranded telomeric DNA is composed of six subunits. The double-stranded telomeric DNA is bound by TRF1 and TRF2. TPP1 and POT1 are capable of binding single-stranded DNA. TIN2 serves to connect the dsDNA binding complex TRF1/TRF2 to the ssDNA binding complex POT1/TPP1. Rap1 binds to the telomere by interacting with TRF1 and TRF2. Moreover, this study will address the regulation and comparison of the shelterin complex. Additionally, in mammals, the activation of DNA damage response pathways is necessary when double-strand DNA is broken. This, in turn, elucidates the specific repair pathways that are employed. We conclude by discussing the T-loop structure, as telomeres in several species have been shown to fold back into a structure called a T-loop, which is believed to mediate telomere protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Razi Institute
Archives of Razi Institute Veterinary-Veterinary (all)
CiteScore
1.50
自引率
0.00%
发文量
108
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信