基于岩石图像和激光诱导击穿光谱的双模式融合提高判别分析的准确性。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Applied Spectroscopy Pub Date : 2025-10-01 Epub Date: 2025-07-02 DOI:10.1177/00037028251349524
Saifullah Jamali, Hongbo Fu, Mengyang Zhang, Huadong Wang, Nek Muhammad Shaikh, Bian Wu, Baddar Ul Ddin Jamali, Feifan Shi, Zongling Ding, Yuzhu Liu, Zhirong Zhang
{"title":"基于岩石图像和激光诱导击穿光谱的双模式融合提高判别分析的准确性。","authors":"Saifullah Jamali, Hongbo Fu, Mengyang Zhang, Huadong Wang, Nek Muhammad Shaikh, Bian Wu, Baddar Ul Ddin Jamali, Feifan Shi, Zongling Ding, Yuzhu Liu, Zhirong Zhang","doi":"10.1177/00037028251349524","DOIUrl":null,"url":null,"abstract":"<p><p>Rocks are an extremely important and indispensable part of the Earth's crust, with wide applications in various fields such as geology, environmental monitoring, and industry. Traditional methods often rely on a single analytical technique or visual inspection, but this may not achieve the accuracy required for thorough classification. Laser-induced breakdown spectroscopy (LIBS) technology mainly provides information on the composition and content of rock elements, while images can provide appearance information such as color and texture. The multilayer perceptron (MLP) and DenseNet121 models were selected for processing preprocessed LIBS and image data, respectively. When using LIBS and images separately for classification, the accuracy rates were 93.63% and 90.90%, respectively. However, after fusing the bimodal data using LIBS and images, we achieved a significant performance improvement of 97.27% in accuracy. This study indicates that advanced neural network models can effectively integrate LIBS and image data and improve the performance of rock classification.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1455-1464"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Mode Fusion Based on Rock Images and Laser-Induced Breakdown Spectroscopy to Improve the Accuracy of Discriminant Analysis.\",\"authors\":\"Saifullah Jamali, Hongbo Fu, Mengyang Zhang, Huadong Wang, Nek Muhammad Shaikh, Bian Wu, Baddar Ul Ddin Jamali, Feifan Shi, Zongling Ding, Yuzhu Liu, Zhirong Zhang\",\"doi\":\"10.1177/00037028251349524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rocks are an extremely important and indispensable part of the Earth's crust, with wide applications in various fields such as geology, environmental monitoring, and industry. Traditional methods often rely on a single analytical technique or visual inspection, but this may not achieve the accuracy required for thorough classification. Laser-induced breakdown spectroscopy (LIBS) technology mainly provides information on the composition and content of rock elements, while images can provide appearance information such as color and texture. The multilayer perceptron (MLP) and DenseNet121 models were selected for processing preprocessed LIBS and image data, respectively. When using LIBS and images separately for classification, the accuracy rates were 93.63% and 90.90%, respectively. However, after fusing the bimodal data using LIBS and images, we achieved a significant performance improvement of 97.27% in accuracy. This study indicates that advanced neural network models can effectively integrate LIBS and image data and improve the performance of rock classification.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"1455-1464\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251349524\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251349524","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

岩石是地壳极其重要和不可缺少的组成部分,在地质、环境监测和工业等各个领域都有广泛的应用。传统的方法通常依赖于单一的分析技术或目视检查,但这可能无法达到彻底分类所需的准确性。激光诱导击穿光谱(LIBS)技术主要提供岩石元素的组成和含量信息,而图像可以提供颜色和纹理等外观信息。选择多层感知器(MLP)和DenseNet121模型分别处理预处理后的LIBS和图像数据。分别使用LIBS和图像进行分类时,准确率分别为93.63%和90.90%。然而,在使用LIBS和图像融合双峰数据后,我们在准确率上取得了97.27%的显着性能提高。研究表明,先进的神经网络模型可以有效地将LIBS与图像数据相结合,提高岩石分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Mode Fusion Based on Rock Images and Laser-Induced Breakdown Spectroscopy to Improve the Accuracy of Discriminant Analysis.

Rocks are an extremely important and indispensable part of the Earth's crust, with wide applications in various fields such as geology, environmental monitoring, and industry. Traditional methods often rely on a single analytical technique or visual inspection, but this may not achieve the accuracy required for thorough classification. Laser-induced breakdown spectroscopy (LIBS) technology mainly provides information on the composition and content of rock elements, while images can provide appearance information such as color and texture. The multilayer perceptron (MLP) and DenseNet121 models were selected for processing preprocessed LIBS and image data, respectively. When using LIBS and images separately for classification, the accuracy rates were 93.63% and 90.90%, respectively. However, after fusing the bimodal data using LIBS and images, we achieved a significant performance improvement of 97.27% in accuracy. This study indicates that advanced neural network models can effectively integrate LIBS and image data and improve the performance of rock classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信