{"title":"供体-受体FeEu─N4活性位点的高效电化学N2固定。","authors":"Zhiya Han, Shiyu Zhang, Yiting Xu, Na He, Jiayin Yang, Shuqi Wang, Huiting Ni, Wenkai Xie, Fengyuan Wang, Chao Li, Liping Tong, Wenda Li, Boxu Feng, Senhe Huang, Gaijuan Guo, Sheng Han, Miaosen Yang, Shaohua Liu","doi":"10.1002/smtd.202500828","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic nitrogen reduction reaction (NRR) represents a promising approach to sustainable ammonia production, but the low Faradaic efficiency (FE) and poor ammonia yield rate limit its practical application. This work demonstrates an innovative FeEu─NC catalyst that leverages distinct donor-acceptor electron pairs between Fe and Eu atoms to significantly enhance the electrocatalytic NRR. The FeEu─NC catalyst demonstrates an outstanding ammonia yield of 221.6 µg h<sup>-1 </sup>mg<sub>cat</sub> <sup>-1</sup> and a Faradaic efficiency of 61.1%, surpassing most previously reported NRR catalysts. Comprehensive experimental characterization indicates that electron transfer from Eu to Fe atoms weakens the N≡N bond, enhances N<sub>2</sub> activation, and reduces the energy barrier of the potential-determining step, compared to Fe─NC. Furthermore, the difference in limiting potentials between the hydrogen evolution reaction (HER) and NRR suggests that the FeEu─NC catalyst prioritizes NRR over HER, enhancing its efficiency for ammonia synthesis. This work provides a blueprint for constructing highly active and selective electrocatalysts by exploiting intermetallic electron transfer, offering significant insights into the design of efficient electrochemical nitrogen fixation systems.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500828"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Electrochemical N<sub>2</sub> Fixation over Donor-Acceptor FeEu─N<sub>4</sub> Active Site.\",\"authors\":\"Zhiya Han, Shiyu Zhang, Yiting Xu, Na He, Jiayin Yang, Shuqi Wang, Huiting Ni, Wenkai Xie, Fengyuan Wang, Chao Li, Liping Tong, Wenda Li, Boxu Feng, Senhe Huang, Gaijuan Guo, Sheng Han, Miaosen Yang, Shaohua Liu\",\"doi\":\"10.1002/smtd.202500828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrocatalytic nitrogen reduction reaction (NRR) represents a promising approach to sustainable ammonia production, but the low Faradaic efficiency (FE) and poor ammonia yield rate limit its practical application. This work demonstrates an innovative FeEu─NC catalyst that leverages distinct donor-acceptor electron pairs between Fe and Eu atoms to significantly enhance the electrocatalytic NRR. The FeEu─NC catalyst demonstrates an outstanding ammonia yield of 221.6 µg h<sup>-1 </sup>mg<sub>cat</sub> <sup>-1</sup> and a Faradaic efficiency of 61.1%, surpassing most previously reported NRR catalysts. Comprehensive experimental characterization indicates that electron transfer from Eu to Fe atoms weakens the N≡N bond, enhances N<sub>2</sub> activation, and reduces the energy barrier of the potential-determining step, compared to Fe─NC. Furthermore, the difference in limiting potentials between the hydrogen evolution reaction (HER) and NRR suggests that the FeEu─NC catalyst prioritizes NRR over HER, enhancing its efficiency for ammonia synthesis. This work provides a blueprint for constructing highly active and selective electrocatalysts by exploiting intermetallic electron transfer, offering significant insights into the design of efficient electrochemical nitrogen fixation systems.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500828\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500828\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500828","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient Electrochemical N2 Fixation over Donor-Acceptor FeEu─N4 Active Site.
Electrocatalytic nitrogen reduction reaction (NRR) represents a promising approach to sustainable ammonia production, but the low Faradaic efficiency (FE) and poor ammonia yield rate limit its practical application. This work demonstrates an innovative FeEu─NC catalyst that leverages distinct donor-acceptor electron pairs between Fe and Eu atoms to significantly enhance the electrocatalytic NRR. The FeEu─NC catalyst demonstrates an outstanding ammonia yield of 221.6 µg h-1 mgcat-1 and a Faradaic efficiency of 61.1%, surpassing most previously reported NRR catalysts. Comprehensive experimental characterization indicates that electron transfer from Eu to Fe atoms weakens the N≡N bond, enhances N2 activation, and reduces the energy barrier of the potential-determining step, compared to Fe─NC. Furthermore, the difference in limiting potentials between the hydrogen evolution reaction (HER) and NRR suggests that the FeEu─NC catalyst prioritizes NRR over HER, enhancing its efficiency for ammonia synthesis. This work provides a blueprint for constructing highly active and selective electrocatalysts by exploiting intermetallic electron transfer, offering significant insights into the design of efficient electrochemical nitrogen fixation systems.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.