{"title":"基于氨基偶氮苯改性明胶与聚环糊精主客体相互作用设计具有抗菌性能的自愈水凝胶以延长酪氨酸酶的保质期。","authors":"Shaghayegh Vakili , Hamed Azadfar , Ebrahim Ahmadi , Zahra Mohamadnia , Atiyeh Mahdavi , Faezeh Hanifeh","doi":"10.1021/acs.biomac.5c00346","DOIUrl":null,"url":null,"abstract":"<div><div>Here, a self-healing hydrogel was designed and synthesized to immobilize tyrosinase enzyme (Tyr), addressing the need for improved enzyme performance. The self-healing properties of the hydrogel ensured structural integrity, while its enzyme immobilization capability significantly enhanced enzyme stability and activity. The hydrogel was synthesized via host–guest interactions between polycyclodextrin (PCD) and aminoazobenzene-modified gelatin (Gel-AZO), and chemically cross-linked in the presence of glycidyl methacrylate-modified gelatin (GM-Gelatin) and acryloyloxyethyltrimethylammonium chloride (DAC) to form a dual-network structure. The immobilized enzyme retained 94.56% of the free enzyme’s activity and remained stable under varying pH and temperatures, maintaining 70% activity at 70 °C. Reusability tests showed preserved enzymatic activity over six cycles. The hydrogel exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli, maintained cell viability above 80%, and showed hemolytic activity below 5%. These results highlight the potential applicability of this self-healing hydrogel in biomedical and industrial settings that require stable enzymatic performance.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (249KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 7","pages":"Pages 4364-4379"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Self-Healing Hydrogels with Antibacterial Property Based on Host–Guest Interactions between Aminoazobenzene-Modified Gelatin and Polycyclodextrin for Prolonging the Shelf Life of Tyrosinase Enzyme\",\"authors\":\"Shaghayegh Vakili , Hamed Azadfar , Ebrahim Ahmadi , Zahra Mohamadnia , Atiyeh Mahdavi , Faezeh Hanifeh\",\"doi\":\"10.1021/acs.biomac.5c00346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here, a self-healing hydrogel was designed and synthesized to immobilize tyrosinase enzyme (Tyr), addressing the need for improved enzyme performance. The self-healing properties of the hydrogel ensured structural integrity, while its enzyme immobilization capability significantly enhanced enzyme stability and activity. The hydrogel was synthesized via host–guest interactions between polycyclodextrin (PCD) and aminoazobenzene-modified gelatin (Gel-AZO), and chemically cross-linked in the presence of glycidyl methacrylate-modified gelatin (GM-Gelatin) and acryloyloxyethyltrimethylammonium chloride (DAC) to form a dual-network structure. The immobilized enzyme retained 94.56% of the free enzyme’s activity and remained stable under varying pH and temperatures, maintaining 70% activity at 70 °C. Reusability tests showed preserved enzymatic activity over six cycles. The hydrogel exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli, maintained cell viability above 80%, and showed hemolytic activity below 5%. These results highlight the potential applicability of this self-healing hydrogel in biomedical and industrial settings that require stable enzymatic performance.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (249KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 7\",\"pages\":\"Pages 4364-4379\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1525779725003101\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725003101","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Designing Self-Healing Hydrogels with Antibacterial Property Based on Host–Guest Interactions between Aminoazobenzene-Modified Gelatin and Polycyclodextrin for Prolonging the Shelf Life of Tyrosinase Enzyme
Here, a self-healing hydrogel was designed and synthesized to immobilize tyrosinase enzyme (Tyr), addressing the need for improved enzyme performance. The self-healing properties of the hydrogel ensured structural integrity, while its enzyme immobilization capability significantly enhanced enzyme stability and activity. The hydrogel was synthesized via host–guest interactions between polycyclodextrin (PCD) and aminoazobenzene-modified gelatin (Gel-AZO), and chemically cross-linked in the presence of glycidyl methacrylate-modified gelatin (GM-Gelatin) and acryloyloxyethyltrimethylammonium chloride (DAC) to form a dual-network structure. The immobilized enzyme retained 94.56% of the free enzyme’s activity and remained stable under varying pH and temperatures, maintaining 70% activity at 70 °C. Reusability tests showed preserved enzymatic activity over six cycles. The hydrogel exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli, maintained cell viability above 80%, and showed hemolytic activity below 5%. These results highlight the potential applicability of this self-healing hydrogel in biomedical and industrial settings that require stable enzymatic performance.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.