Fe2S2氢化酶模拟物对CO2还原的再考察:用析氢反应催化剂催化CO2生成甲酸的经验教训

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Christopher J. Miller, Byunghoon Lee, Jacob A. Barrett, Joseph M. Palasz, Thomas Chan, Anoushka Shandilya, Clifford P. Kubiak
{"title":"Fe2S2氢化酶模拟物对CO2还原的再考察:用析氢反应催化剂催化CO2生成甲酸的经验教训","authors":"Christopher J. Miller,&nbsp;Byunghoon Lee,&nbsp;Jacob A. Barrett,&nbsp;Joseph M. Palasz,&nbsp;Thomas Chan,&nbsp;Anoushka Shandilya,&nbsp;Clifford P. Kubiak","doi":"10.1002/celc.202500030","DOIUrl":null,"url":null,"abstract":"<p>Recent reports show [FeFe] hydrogenase mimics are active for the electrochemical reduction of CO<sub>2</sub> to formate (HCOO<sup>−</sup>). Herein, the electrochemical reduction of CO<sub>2</sub> with the [FeFe] hydrogenase mimic [Fe<sub>2</sub>(μ-pdt)(CO)<sub>6</sub>, <b>1</b>, where pdt = propane-1,3-dithiolate] in acetonitrile is reported. In the presence of the weak acid, methanol (MeOH), <b>1</b> reduces CO<sub>2</sub> to both CO (Faradaic Efficiency maximum [FE<sub>max</sub>] of 16 ± 6%) and HCOO<sup>−</sup> (FE<sub>max</sub> = 20%) and produces H<sub>2</sub> (FE<sub>max</sub> = 56 ± 4%). Without added MeOH, <b>1</b> reacts with adventitious water to form H<sub>2</sub> (FE<sub>max</sub> = 85 ± 1%), HCOO<sup>−</sup> (FE<sub>max</sub> = 7.8%), and CO (FE<sub>max</sub> = 7 ± 3%) with CO<sub>3</sub><sup>2−</sup> being detected by infrared spectroscopy.  Product formation is potential dependent: more negative potentials increases selectivity for HCOO<sup>−</sup> over CO. The first reduction of <b>1</b> forms a pdt-bridged dimer, <b>2</b>. However, the reduction of <b>2</b> at the potentials required for electrochemical CO<sub>2</sub> reduction leads to two new species. Using density functional theory, and infrared spectroelectrochemistry (IR-SEC), these structures are identified to be [Fe(CO)<sub>4</sub>]<sup>2−</sup> (<b>3</b>) and a trinuclear Fe<sub>3</sub> species (<b>4</b>). While these species can reduce CO<sub>2</sub> to CO and HCOO<sup>−</sup>, the predominant formation of H<sub>2</sub> reveals kinetic issues in  CO<sub>2</sub> reduction. The work offers to consider alternate competing mechanistic pathways and explains the lack of product selectivity when using hydrogen evolution reaction catalyst for CO<sub>2</sub> reduction to HCOO<sup>−</sup>.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 13","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500030","citationCount":"0","resultStr":"{\"title\":\"A Reexamination of CO2 Reduction with Fe2S2 Hydrogenase Mimics: Lessons in Using a Hydrogen Evolution Reaction Catalyst for CO2 to Formate Catalysis\",\"authors\":\"Christopher J. Miller,&nbsp;Byunghoon Lee,&nbsp;Jacob A. Barrett,&nbsp;Joseph M. Palasz,&nbsp;Thomas Chan,&nbsp;Anoushka Shandilya,&nbsp;Clifford P. Kubiak\",\"doi\":\"10.1002/celc.202500030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent reports show [FeFe] hydrogenase mimics are active for the electrochemical reduction of CO<sub>2</sub> to formate (HCOO<sup>−</sup>). Herein, the electrochemical reduction of CO<sub>2</sub> with the [FeFe] hydrogenase mimic [Fe<sub>2</sub>(μ-pdt)(CO)<sub>6</sub>, <b>1</b>, where pdt = propane-1,3-dithiolate] in acetonitrile is reported. In the presence of the weak acid, methanol (MeOH), <b>1</b> reduces CO<sub>2</sub> to both CO (Faradaic Efficiency maximum [FE<sub>max</sub>] of 16 ± 6%) and HCOO<sup>−</sup> (FE<sub>max</sub> = 20%) and produces H<sub>2</sub> (FE<sub>max</sub> = 56 ± 4%). Without added MeOH, <b>1</b> reacts with adventitious water to form H<sub>2</sub> (FE<sub>max</sub> = 85 ± 1%), HCOO<sup>−</sup> (FE<sub>max</sub> = 7.8%), and CO (FE<sub>max</sub> = 7 ± 3%) with CO<sub>3</sub><sup>2−</sup> being detected by infrared spectroscopy.  Product formation is potential dependent: more negative potentials increases selectivity for HCOO<sup>−</sup> over CO. The first reduction of <b>1</b> forms a pdt-bridged dimer, <b>2</b>. However, the reduction of <b>2</b> at the potentials required for electrochemical CO<sub>2</sub> reduction leads to two new species. Using density functional theory, and infrared spectroelectrochemistry (IR-SEC), these structures are identified to be [Fe(CO)<sub>4</sub>]<sup>2−</sup> (<b>3</b>) and a trinuclear Fe<sub>3</sub> species (<b>4</b>). While these species can reduce CO<sub>2</sub> to CO and HCOO<sup>−</sup>, the predominant formation of H<sub>2</sub> reveals kinetic issues in  CO<sub>2</sub> reduction. The work offers to consider alternate competing mechanistic pathways and explains the lack of product selectivity when using hydrogen evolution reaction catalyst for CO<sub>2</sub> reduction to HCOO<sup>−</sup>.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 13\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500030\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500030","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

最近的报道表明[FeFe]氢化酶模拟物对电化学还原CO2生成甲酸(HCOO−)具有活性。本文报道了用[FeFe]氢化酶模拟物[Fe2(μ-pdt)(CO) 6,1,其中pdt =丙烷-1,3-二硫酸酯]在乙腈中电化学还原CO2。在弱酸甲醇(MeOH)存在下,1将CO2还原为CO (Faradaic Efficiency maximum [FEmax]为16±6%)和HCOO - (FEmax = 20%),并生成H2 (FEmax = 56±4%)。在不添加MeOH的情况下,1与不定水反应生成H2 (FEmax = 85±1%)、HCOO−(FEmax = 7.8%)和CO (FEmax = 7±3%),其中CO32−通过红外光谱检测。产物的形成依赖于电位:更多的负电位增加了HCOO−对CO的选择性。1的第一次还原形成pdt桥接二聚体2。然而,在电化学CO2还原所需的电位下,2的还原会产生两个新的物质。利用密度泛函理论和红外光谱电化学(IR-SEC),这些结构被鉴定为[Fe(CO)4]2−(3)和三核Fe3(4)。虽然这些物种可以将CO2还原为CO和HCOO−,但H2的主要形成揭示了CO2还原的动力学问题。这项工作提供了考虑替代竞争的机制途径,并解释了当使用析氢反应催化剂将CO2还原为HCOO−时缺乏产物选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Reexamination of CO2 Reduction with Fe2S2 Hydrogenase Mimics: Lessons in Using a Hydrogen Evolution Reaction Catalyst for CO2 to Formate Catalysis

A Reexamination of CO2 Reduction with Fe2S2 Hydrogenase Mimics: Lessons in Using a Hydrogen Evolution Reaction Catalyst for CO2 to Formate Catalysis

Recent reports show [FeFe] hydrogenase mimics are active for the electrochemical reduction of CO2 to formate (HCOO). Herein, the electrochemical reduction of CO2 with the [FeFe] hydrogenase mimic [Fe2(μ-pdt)(CO)6, 1, where pdt = propane-1,3-dithiolate] in acetonitrile is reported. In the presence of the weak acid, methanol (MeOH), 1 reduces CO2 to both CO (Faradaic Efficiency maximum [FEmax] of 16 ± 6%) and HCOO (FEmax = 20%) and produces H2 (FEmax = 56 ± 4%). Without added MeOH, 1 reacts with adventitious water to form H2 (FEmax = 85 ± 1%), HCOO (FEmax = 7.8%), and CO (FEmax = 7 ± 3%) with CO32− being detected by infrared spectroscopy.  Product formation is potential dependent: more negative potentials increases selectivity for HCOO over CO. The first reduction of 1 forms a pdt-bridged dimer, 2. However, the reduction of 2 at the potentials required for electrochemical CO2 reduction leads to two new species. Using density functional theory, and infrared spectroelectrochemistry (IR-SEC), these structures are identified to be [Fe(CO)4]2− (3) and a trinuclear Fe3 species (4). While these species can reduce CO2 to CO and HCOO, the predominant formation of H2 reveals kinetic issues in  CO2 reduction. The work offers to consider alternate competing mechanistic pathways and explains the lack of product selectivity when using hydrogen evolution reaction catalyst for CO2 reduction to HCOO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信