连续体结构拓扑优化的量子经典混合遗传进化算法

IF 2.9 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhenghuan Wang, Xiaojun Wang
{"title":"连续体结构拓扑优化的量子经典混合遗传进化算法","authors":"Zhenghuan Wang,&nbsp;Xiaojun Wang","doi":"10.1002/nme.70073","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Quantum computing platforms offer unique advantages—such as inherent parallelism and efficient handling of large-scale computations—that unlock novel solutions for complex structural design challenges. This paper introduces QCHGEA-TOF (Quantum-Classical Hybrid Genetic Evolutionary Algorithm-Based Topology Optimization Framework), a method that integrates quantum computing to enhance global search capabilities. The framework maps structural elements to qubits in quantum circuits, enabling efficient exploration of design configurations through quantum superposition and parallelism. Classical computing components employ finite element analysis, image processing strategies, and bidirectional evolutionary structural optimization (BESO) to ensure structural feasibility, connectivity, and precision. Benchmark case studies demonstrate that QCHGEA-TOF achieves lower structural compliance compared to traditional algorithms like GA and BESO, highlighting its potential for generating high-quality optimized topologies. These results underscore QCHGEA-TOF's ability to address complex global optimization challenges in structural design. Future research will focus on quantifying its computational efficiency and scalability, paving the way for broader applications of quantum-classical hybrid methods in topology optimization.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 13","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-Classical Hybrid Genetic Evolutionary Algorithm for Topology Optimization of Continuum Structures\",\"authors\":\"Zhenghuan Wang,&nbsp;Xiaojun Wang\",\"doi\":\"10.1002/nme.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Quantum computing platforms offer unique advantages—such as inherent parallelism and efficient handling of large-scale computations—that unlock novel solutions for complex structural design challenges. This paper introduces QCHGEA-TOF (Quantum-Classical Hybrid Genetic Evolutionary Algorithm-Based Topology Optimization Framework), a method that integrates quantum computing to enhance global search capabilities. The framework maps structural elements to qubits in quantum circuits, enabling efficient exploration of design configurations through quantum superposition and parallelism. Classical computing components employ finite element analysis, image processing strategies, and bidirectional evolutionary structural optimization (BESO) to ensure structural feasibility, connectivity, and precision. Benchmark case studies demonstrate that QCHGEA-TOF achieves lower structural compliance compared to traditional algorithms like GA and BESO, highlighting its potential for generating high-quality optimized topologies. These results underscore QCHGEA-TOF's ability to address complex global optimization challenges in structural design. Future research will focus on quantifying its computational efficiency and scalability, paving the way for broader applications of quantum-classical hybrid methods in topology optimization.</p>\\n </div>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 13\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.70073\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70073","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子计算平台提供了独特的优势,例如固有的并行性和大规模计算的高效处理,为复杂的结构设计挑战提供了新的解决方案。本文介绍了一种基于量子经典混合遗传进化算法的拓扑优化框架(QCHGEA-TOF),这是一种集成量子计算来增强全局搜索能力的方法。该框架将结构元素映射到量子电路中的量子位,通过量子叠加和并行性实现对设计配置的有效探索。经典计算组件采用有限元分析、图像处理策略和双向进化结构优化(BESO)来确保结构的可行性、连通性和精度。基准案例研究表明,与传统算法(如GA和BESO)相比,QCHGEA-TOF实现了较低的结构顺应性,突出了其生成高质量优化拓扑的潜力。这些结果强调了QCHGEA-TOF解决结构设计中复杂的全局优化挑战的能力。未来的研究将集中于量化其计算效率和可扩展性,为量子-经典混合方法在拓扑优化中的更广泛应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-Classical Hybrid Genetic Evolutionary Algorithm for Topology Optimization of Continuum Structures

Quantum computing platforms offer unique advantages—such as inherent parallelism and efficient handling of large-scale computations—that unlock novel solutions for complex structural design challenges. This paper introduces QCHGEA-TOF (Quantum-Classical Hybrid Genetic Evolutionary Algorithm-Based Topology Optimization Framework), a method that integrates quantum computing to enhance global search capabilities. The framework maps structural elements to qubits in quantum circuits, enabling efficient exploration of design configurations through quantum superposition and parallelism. Classical computing components employ finite element analysis, image processing strategies, and bidirectional evolutionary structural optimization (BESO) to ensure structural feasibility, connectivity, and precision. Benchmark case studies demonstrate that QCHGEA-TOF achieves lower structural compliance compared to traditional algorithms like GA and BESO, highlighting its potential for generating high-quality optimized topologies. These results underscore QCHGEA-TOF's ability to address complex global optimization challenges in structural design. Future research will focus on quantifying its computational efficiency and scalability, paving the way for broader applications of quantum-classical hybrid methods in topology optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信