Antti Piironen, Jeffrey M. Knetter, Kyle A. Spragens, Joshua L. Dooley, Vijay Patil, Eric T. Reed, Megan Ross, Daniel Gibson, Adam C. Behney, Mark J. Petrie, Todd A. Sanders, Mitch D. Weegman
{"title":"生产力的环境驱动因素解释了半个世纪以来北极筑巢鸟的种群模式","authors":"Antti Piironen, Jeffrey M. Knetter, Kyle A. Spragens, Joshua L. Dooley, Vijay Patil, Eric T. Reed, Megan Ross, Daniel Gibson, Adam C. Behney, Mark J. Petrie, Todd A. Sanders, Mitch D. Weegman","doi":"10.1002/eap.70067","DOIUrl":null,"url":null,"abstract":"<p>Joint estimation of demographic rates and population size has become an essential tool in ecology because it enables evaluating mechanisms for population change and testing hypotheses about drivers of demography in a single modeling framework. This approach provides a comprehensive perspective on population dynamics and how animal populations will respond to global pressures in future years. However, long-term data for such analyses are often limited in quantity and quality. We developed an integrated population model combining data on demography and population size from nine different sources to understand the population ecology of the lesser snow goose (<i>Anser caerulescens caerulescens</i>) in the Pacific Flyway in North America from 1970 to 2022. We divided the flyway population into Wrangel Island and Western Arctic subpopulations and assessed demographic mechanisms for population change and environmental and anthropogenic drivers that influenced demography. During 1970–2022, the estimated spring population of snow geese in the Pacific Flyway increased from ~300,000 to ~2,300,000. Short-term changes in population growth rate were primarily driven by changes in productivity in the Western Arctic and productivity and immigration in Wrangel Island. Changes in hunting and natural mortality had less influence on short-term but likely contributed to the pronounced long-term population growth. Early snowmelt positively influenced per capita productivity in both regions, and warm, rainy weather during the non-breeding season was associated with high per capita productivity in the Western Arctic. In the Western Arctic, per capita productivity was negatively associated with population size, and adult natural mortality was positively associated with population size, indicating density-dependent regulation in this subpopulation. In Wrangel Island, warm weather in early fall decreased juvenile natural mortality. Our results demonstrate that per capita productivity and immigration, rather than adult survival, were the primary mechanisms of short-term population change in this long-lived species. Our results also indicate that environmental conditions and density-dependent effects can impact population dynamics more than harvest, even for a long-lived, commonly harvested species. We demonstrate that a warming climate can have multiple effects on demography, emphasizing the importance of assessing a variety of spatial and temporal factors when predicting how populations might respond to large-scale environmental changes. This emphasizes the importance of conservation plans that consider these environmental drivers, although this may complicate direct management of such populations.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"35 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.70067","citationCount":"0","resultStr":"{\"title\":\"Environmental drivers of productivity explain population patterns of an Arctic-nesting bird across a half-century\",\"authors\":\"Antti Piironen, Jeffrey M. Knetter, Kyle A. Spragens, Joshua L. Dooley, Vijay Patil, Eric T. Reed, Megan Ross, Daniel Gibson, Adam C. Behney, Mark J. Petrie, Todd A. Sanders, Mitch D. Weegman\",\"doi\":\"10.1002/eap.70067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Joint estimation of demographic rates and population size has become an essential tool in ecology because it enables evaluating mechanisms for population change and testing hypotheses about drivers of demography in a single modeling framework. This approach provides a comprehensive perspective on population dynamics and how animal populations will respond to global pressures in future years. However, long-term data for such analyses are often limited in quantity and quality. We developed an integrated population model combining data on demography and population size from nine different sources to understand the population ecology of the lesser snow goose (<i>Anser caerulescens caerulescens</i>) in the Pacific Flyway in North America from 1970 to 2022. We divided the flyway population into Wrangel Island and Western Arctic subpopulations and assessed demographic mechanisms for population change and environmental and anthropogenic drivers that influenced demography. During 1970–2022, the estimated spring population of snow geese in the Pacific Flyway increased from ~300,000 to ~2,300,000. Short-term changes in population growth rate were primarily driven by changes in productivity in the Western Arctic and productivity and immigration in Wrangel Island. Changes in hunting and natural mortality had less influence on short-term but likely contributed to the pronounced long-term population growth. Early snowmelt positively influenced per capita productivity in both regions, and warm, rainy weather during the non-breeding season was associated with high per capita productivity in the Western Arctic. In the Western Arctic, per capita productivity was negatively associated with population size, and adult natural mortality was positively associated with population size, indicating density-dependent regulation in this subpopulation. In Wrangel Island, warm weather in early fall decreased juvenile natural mortality. Our results demonstrate that per capita productivity and immigration, rather than adult survival, were the primary mechanisms of short-term population change in this long-lived species. Our results also indicate that environmental conditions and density-dependent effects can impact population dynamics more than harvest, even for a long-lived, commonly harvested species. We demonstrate that a warming climate can have multiple effects on demography, emphasizing the importance of assessing a variety of spatial and temporal factors when predicting how populations might respond to large-scale environmental changes. This emphasizes the importance of conservation plans that consider these environmental drivers, although this may complicate direct management of such populations.</p>\",\"PeriodicalId\":55168,\"journal\":{\"name\":\"Ecological Applications\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.70067\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eap.70067\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.70067","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Environmental drivers of productivity explain population patterns of an Arctic-nesting bird across a half-century
Joint estimation of demographic rates and population size has become an essential tool in ecology because it enables evaluating mechanisms for population change and testing hypotheses about drivers of demography in a single modeling framework. This approach provides a comprehensive perspective on population dynamics and how animal populations will respond to global pressures in future years. However, long-term data for such analyses are often limited in quantity and quality. We developed an integrated population model combining data on demography and population size from nine different sources to understand the population ecology of the lesser snow goose (Anser caerulescens caerulescens) in the Pacific Flyway in North America from 1970 to 2022. We divided the flyway population into Wrangel Island and Western Arctic subpopulations and assessed demographic mechanisms for population change and environmental and anthropogenic drivers that influenced demography. During 1970–2022, the estimated spring population of snow geese in the Pacific Flyway increased from ~300,000 to ~2,300,000. Short-term changes in population growth rate were primarily driven by changes in productivity in the Western Arctic and productivity and immigration in Wrangel Island. Changes in hunting and natural mortality had less influence on short-term but likely contributed to the pronounced long-term population growth. Early snowmelt positively influenced per capita productivity in both regions, and warm, rainy weather during the non-breeding season was associated with high per capita productivity in the Western Arctic. In the Western Arctic, per capita productivity was negatively associated with population size, and adult natural mortality was positively associated with population size, indicating density-dependent regulation in this subpopulation. In Wrangel Island, warm weather in early fall decreased juvenile natural mortality. Our results demonstrate that per capita productivity and immigration, rather than adult survival, were the primary mechanisms of short-term population change in this long-lived species. Our results also indicate that environmental conditions and density-dependent effects can impact population dynamics more than harvest, even for a long-lived, commonly harvested species. We demonstrate that a warming climate can have multiple effects on demography, emphasizing the importance of assessing a variety of spatial and temporal factors when predicting how populations might respond to large-scale environmental changes. This emphasizes the importance of conservation plans that consider these environmental drivers, although this may complicate direct management of such populations.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.