基于传感器数据和改进密度峰聚类算法的船用柴油机衬套故障模式识别

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaonan Chang;Jing Xu;Zhenrui Zhang;Xinyang Sun;Bingwu Gao;Changwen Yang
{"title":"基于传感器数据和改进密度峰聚类算法的船用柴油机衬套故障模式识别","authors":"Xiaonan Chang;Jing Xu;Zhenrui Zhang;Xinyang Sun;Bingwu Gao;Changwen Yang","doi":"10.1109/JSEN.2025.3574410","DOIUrl":null,"url":null,"abstract":"Bushing fault pattern recognition is crucial for extending the lifespan of marine diesel engines. Density peak clustering (DPC) is widely used as an unsupervised learning method for fault pattern recognition. However, the DPC algorithm faces the problems of uneven local density distribution of data and sensitivity to parameter selection when dealing with axial tile fault diagnosis. To address the above problems, this article introduces an unsupervised approach using the improved density peaks clustering (IAO-HDPC) for sensor data clustering and further applies this method to the data collected by the sensors for the bushing fault pattern recognition. Specifically, the proposed method first revises the allocation strategy of the clustering algorithm to address the issue of the DPC algorithm’s sensitivity to the local density of the data. Subsequently, the improved aquila optimizer (IAO) algorithm is employed to determine the optimal parameters for the clustering algorithm, thereby solving the challenge of parameter selection in the DPC algorithm. Finally, the experimental results demonstrate that the method achieves an average fault identification accuracy of 98%. Compared with the other four unsupervised algorithms, the proposed method achieves the best recognition results.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 13","pages":"25338-25352"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marine Diesel Engine Bushing Fault Pattern Recognition Based on the Sensor Data and Improved Density Peaks Clustering Algorithm\",\"authors\":\"Xiaonan Chang;Jing Xu;Zhenrui Zhang;Xinyang Sun;Bingwu Gao;Changwen Yang\",\"doi\":\"10.1109/JSEN.2025.3574410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bushing fault pattern recognition is crucial for extending the lifespan of marine diesel engines. Density peak clustering (DPC) is widely used as an unsupervised learning method for fault pattern recognition. However, the DPC algorithm faces the problems of uneven local density distribution of data and sensitivity to parameter selection when dealing with axial tile fault diagnosis. To address the above problems, this article introduces an unsupervised approach using the improved density peaks clustering (IAO-HDPC) for sensor data clustering and further applies this method to the data collected by the sensors for the bushing fault pattern recognition. Specifically, the proposed method first revises the allocation strategy of the clustering algorithm to address the issue of the DPC algorithm’s sensitivity to the local density of the data. Subsequently, the improved aquila optimizer (IAO) algorithm is employed to determine the optimal parameters for the clustering algorithm, thereby solving the challenge of parameter selection in the DPC algorithm. Finally, the experimental results demonstrate that the method achieves an average fault identification accuracy of 98%. Compared with the other four unsupervised algorithms, the proposed method achieves the best recognition results.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 13\",\"pages\":\"25338-25352\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11023119/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11023119/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

衬套故障模式识别对于延长船用柴油机的使用寿命至关重要。密度峰聚类(DPC)作为一种无监督学习方法被广泛应用于故障模式识别。然而,在处理轴瓦故障诊断时,DPC算法面临着数据局部密度分布不均匀和参数选择不敏感的问题。针对上述问题,本文引入了一种基于改进密度峰聚类(IAO-HDPC)的无监督聚类方法对传感器数据进行聚类,并进一步将该方法应用于传感器采集的数据中,用于套管故障模式识别。具体而言,该方法首先修正了聚类算法的分配策略,以解决DPC算法对数据局部密度的敏感性问题。随后,采用改进的aquila optimizer (IAO)算法确定聚类算法的最优参数,从而解决了DPC算法中参数选择的难题。实验结果表明,该方法的平均故障识别准确率达到98%。与其他四种无监督算法相比,本文方法的识别效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marine Diesel Engine Bushing Fault Pattern Recognition Based on the Sensor Data and Improved Density Peaks Clustering Algorithm
Bushing fault pattern recognition is crucial for extending the lifespan of marine diesel engines. Density peak clustering (DPC) is widely used as an unsupervised learning method for fault pattern recognition. However, the DPC algorithm faces the problems of uneven local density distribution of data and sensitivity to parameter selection when dealing with axial tile fault diagnosis. To address the above problems, this article introduces an unsupervised approach using the improved density peaks clustering (IAO-HDPC) for sensor data clustering and further applies this method to the data collected by the sensors for the bushing fault pattern recognition. Specifically, the proposed method first revises the allocation strategy of the clustering algorithm to address the issue of the DPC algorithm’s sensitivity to the local density of the data. Subsequently, the improved aquila optimizer (IAO) algorithm is employed to determine the optimal parameters for the clustering algorithm, thereby solving the challenge of parameter selection in the DPC algorithm. Finally, the experimental results demonstrate that the method achieves an average fault identification accuracy of 98%. Compared with the other four unsupervised algorithms, the proposed method achieves the best recognition results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信