Antonio Marino;Esteban Restrepo;Claudio Pacchierotti;Paolo Robuffo Giordano
{"title":"基于动态聚类协议的多智能体多资源分配的分散强化学习","authors":"Antonio Marino;Esteban Restrepo;Claudio Pacchierotti;Paolo Robuffo Giordano","doi":"10.1109/LRA.2025.3581126","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of allocating heterogeneous resources among multiple agents in a decentralized manner. Our proposed method, Liquid-Graph-Time Clustering-IPPO, builds upon Independent Proximal Policy Optimization (IPPO) by integrating dynamic cluster consensus, a mechanism that allows agents to form and adapt local sub-teams based on resource demands. This decentralized coordination strategy reduces reliance on global information and enhances scalability. We evaluate LGTC-IPPO against standard multi-agent reinforcement learning baselines and a centralized expert solution across a range of team sizes and resource distributions. Experimental results demonstrate that LGTC-IPPO achieves more stable rewards, better coordination, and robust performance even as the number of agents or resource types increases. Additionally, we illustrate how dynamic clustering enables agents to reallocate resources efficiently also for scenarios with discharging resources.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"8123-8130"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized Reinforcement Learning for Multi-Agent Multi-Resource Allocation via Dynamic Cluster Agreements\",\"authors\":\"Antonio Marino;Esteban Restrepo;Claudio Pacchierotti;Paolo Robuffo Giordano\",\"doi\":\"10.1109/LRA.2025.3581126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the challenge of allocating heterogeneous resources among multiple agents in a decentralized manner. Our proposed method, Liquid-Graph-Time Clustering-IPPO, builds upon Independent Proximal Policy Optimization (IPPO) by integrating dynamic cluster consensus, a mechanism that allows agents to form and adapt local sub-teams based on resource demands. This decentralized coordination strategy reduces reliance on global information and enhances scalability. We evaluate LGTC-IPPO against standard multi-agent reinforcement learning baselines and a centralized expert solution across a range of team sizes and resource distributions. Experimental results demonstrate that LGTC-IPPO achieves more stable rewards, better coordination, and robust performance even as the number of agents or resource types increases. Additionally, we illustrate how dynamic clustering enables agents to reallocate resources efficiently also for scenarios with discharging resources.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 8\",\"pages\":\"8123-8130\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11044426/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11044426/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Decentralized Reinforcement Learning for Multi-Agent Multi-Resource Allocation via Dynamic Cluster Agreements
This letter addresses the challenge of allocating heterogeneous resources among multiple agents in a decentralized manner. Our proposed method, Liquid-Graph-Time Clustering-IPPO, builds upon Independent Proximal Policy Optimization (IPPO) by integrating dynamic cluster consensus, a mechanism that allows agents to form and adapt local sub-teams based on resource demands. This decentralized coordination strategy reduces reliance on global information and enhances scalability. We evaluate LGTC-IPPO against standard multi-agent reinforcement learning baselines and a centralized expert solution across a range of team sizes and resource distributions. Experimental results demonstrate that LGTC-IPPO achieves more stable rewards, better coordination, and robust performance even as the number of agents or resource types increases. Additionally, we illustrate how dynamic clustering enables agents to reallocate resources efficiently also for scenarios with discharging resources.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.