Quande Sun;Yuan Feng;Tao Shan;Juan Zhao;Xia Bai;Tianrun Wang;Zhi Wang
{"title":"一种有效的无源雷达稀疏表示方法","authors":"Quande Sun;Yuan Feng;Tao Shan;Juan Zhao;Xia Bai;Tianrun Wang;Zhi Wang","doi":"10.1109/JSEN.2025.3573568","DOIUrl":null,"url":null,"abstract":"Passive radar (PR) commonly estimates target parameters by calculating the cross-ambiguity function (CAF), which is prone to generating a wider main lobe and higher sidelobes, leading to issues such as weak targets being masked and adjacent targets being difficult to distinguish. A parameter estimation method for PR based on sparse representation (SR) is proposed to address the above challenges. First, an SR model based on signal segmentation and Fourier transform is proposed to address the issue of excessively large dictionary matrix (DM) by using the fast Fourier transform (FFT). Then, an orthogonal matching pursuit (OMP) algorithm based on detection threshold (DT-OMP) is proposed to adaptively determine the number of atoms to be selected by a preset threshold. Furthermore, a model mismatch correction method for SR (MMC-SR) is proposed to achieve accurate estimation of target parameters in off-grid situations. Simulations and practical experiments have shown that the proposed method can effectively mitigate the influence of wider main lobe and higher sidelobes of CAF, thereby improving resolution and providing a refined estimation of target parameters, showcasing significant practical application value.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 13","pages":"25288-25300"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Sparse Representation Method for Passive Radar\",\"authors\":\"Quande Sun;Yuan Feng;Tao Shan;Juan Zhao;Xia Bai;Tianrun Wang;Zhi Wang\",\"doi\":\"10.1109/JSEN.2025.3573568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive radar (PR) commonly estimates target parameters by calculating the cross-ambiguity function (CAF), which is prone to generating a wider main lobe and higher sidelobes, leading to issues such as weak targets being masked and adjacent targets being difficult to distinguish. A parameter estimation method for PR based on sparse representation (SR) is proposed to address the above challenges. First, an SR model based on signal segmentation and Fourier transform is proposed to address the issue of excessively large dictionary matrix (DM) by using the fast Fourier transform (FFT). Then, an orthogonal matching pursuit (OMP) algorithm based on detection threshold (DT-OMP) is proposed to adaptively determine the number of atoms to be selected by a preset threshold. Furthermore, a model mismatch correction method for SR (MMC-SR) is proposed to achieve accurate estimation of target parameters in off-grid situations. Simulations and practical experiments have shown that the proposed method can effectively mitigate the influence of wider main lobe and higher sidelobes of CAF, thereby improving resolution and providing a refined estimation of target parameters, showcasing significant practical application value.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 13\",\"pages\":\"25288-25300\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11021322/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11021322/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Efficient Sparse Representation Method for Passive Radar
Passive radar (PR) commonly estimates target parameters by calculating the cross-ambiguity function (CAF), which is prone to generating a wider main lobe and higher sidelobes, leading to issues such as weak targets being masked and adjacent targets being difficult to distinguish. A parameter estimation method for PR based on sparse representation (SR) is proposed to address the above challenges. First, an SR model based on signal segmentation and Fourier transform is proposed to address the issue of excessively large dictionary matrix (DM) by using the fast Fourier transform (FFT). Then, an orthogonal matching pursuit (OMP) algorithm based on detection threshold (DT-OMP) is proposed to adaptively determine the number of atoms to be selected by a preset threshold. Furthermore, a model mismatch correction method for SR (MMC-SR) is proposed to achieve accurate estimation of target parameters in off-grid situations. Simulations and practical experiments have shown that the proposed method can effectively mitigate the influence of wider main lobe and higher sidelobes of CAF, thereby improving resolution and providing a refined estimation of target parameters, showcasing significant practical application value.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice