{"title":"着色问题的近似最优核","authors":"Ishay Haviv, Dror Rabinovich","doi":"10.1016/j.dam.2025.06.065","DOIUrl":null,"url":null,"abstract":"<div><div>For a fixed integer <span><math><mi>q</mi></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem asks to decide if a given graph has a vertex coloring with <span><math><mi>q</mi></math></span> colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the vertex cover number <span><math><mi>k</mi></math></span> admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span> (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the number <span><math><mi>k</mi></math></span> of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the problem admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span>. He further proved that for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span> the problem admits a near-optimal kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and asked whether such a kernel is achievable for all integers <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. In this short paper, we settle this question in the affirmative.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 66-73"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A near-optimal kernel for a coloring problem\",\"authors\":\"Ishay Haviv, Dror Rabinovich\",\"doi\":\"10.1016/j.dam.2025.06.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a fixed integer <span><math><mi>q</mi></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem asks to decide if a given graph has a vertex coloring with <span><math><mi>q</mi></math></span> colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the vertex cover number <span><math><mi>k</mi></math></span> admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span> (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the number <span><math><mi>k</mi></math></span> of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the problem admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span>. He further proved that for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span> the problem admits a near-optimal kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and asked whether such a kernel is achievable for all integers <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. In this short paper, we settle this question in the affirmative.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 66-73\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500383X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500383X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
For a fixed integer , the problem asks to decide if a given graph has a vertex coloring with colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every , the problem parameterized by the vertex cover number admits a kernel of bit-size , but admits no kernel of bit-size for unless (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the problem parameterized by the number of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every , the problem admits a kernel of bit-size , but admits no kernel of bit-size for unless . He further proved that for the problem admits a near-optimal kernel of bit-size and asked whether such a kernel is achievable for all integers . In this short paper, we settle this question in the affirmative.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.