着色问题的近似最优核

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Ishay Haviv, Dror Rabinovich
{"title":"着色问题的近似最优核","authors":"Ishay Haviv,&nbsp;Dror Rabinovich","doi":"10.1016/j.dam.2025.06.065","DOIUrl":null,"url":null,"abstract":"<div><div>For a fixed integer <span><math><mi>q</mi></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem asks to decide if a given graph has a vertex coloring with <span><math><mi>q</mi></math></span> colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the vertex cover number <span><math><mi>k</mi></math></span> admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span> (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the number <span><math><mi>k</mi></math></span> of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the problem admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span>. He further proved that for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span> the problem admits a near-optimal kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and asked whether such a kernel is achievable for all integers <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. In this short paper, we settle this question in the affirmative.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 66-73"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A near-optimal kernel for a coloring problem\",\"authors\":\"Ishay Haviv,&nbsp;Dror Rabinovich\",\"doi\":\"10.1016/j.dam.2025.06.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a fixed integer <span><math><mi>q</mi></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem asks to decide if a given graph has a vertex coloring with <span><math><mi>q</mi></math></span> colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the vertex cover number <span><math><mi>k</mi></math></span> admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span> (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the <span><math><mrow><mi>q</mi><mtext>− Coloring</mtext></mrow></math></span> problem parameterized by the number <span><math><mi>k</mi></math></span> of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, the problem admits a kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but admits no kernel of bit-size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn><mo>−</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP/poly</mi></mrow></math></span>. He further proved that for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span> the problem admits a near-optimal kernel of bit-size <span><math><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and asked whether such a kernel is achievable for all integers <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. In this short paper, we settle this question in the affirmative.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 66-73\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500383X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500383X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于一个固定的整数q, q−着色问题要求判定一个给定的图是否有一个顶点用q种颜色着色,使得相邻的两个顶点没有相同的颜色。在一系列的论文中,已经证明了对于每一个q≥3,由顶点覆盖数k参数化的q−着色问题存在一个比特大小为O ~ (kq−1)的核,但对于i >;0,除非NP coNP/poly,否则不存在一个比特大小为O(kq−1−_)的核(Jansen and Kratsch, 2013;Jansen和Pieterse, 2019)。2020年,Schalken提出了q−着色问题的核可性问题,该问题由k个顶点参数化,这些顶点的移除导致边缘和孤立顶点的不相交并。他证明了对于每一个q≥3,问题存在一个比特大小为O ~ (k2q−2)的核,但对于i >;0,除非NP≥coNP/poly,否则不存在一个比特大小为O(k2q−3−ε)的核。他进一步证明了对于q∈{3,4},问题承认一个位大小为O ~ (k2q−3)的近最优核,并问是否对于所有整数q≥3都可以实现这样的核。在这篇短文中,我们肯定地解决了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A near-optimal kernel for a coloring problem
For a fixed integer q, the q− Coloring problem asks to decide if a given graph has a vertex coloring with q colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every q3, the q− Coloring problem parameterized by the vertex cover number k admits a kernel of bit-size O˜(kq1), but admits no kernel of bit-size O(kq1ɛ) for ɛ>0 unless NPcoNP/poly (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the q− Coloring problem parameterized by the number k of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every q3, the problem admits a kernel of bit-size O˜(k2q2), but admits no kernel of bit-size O(k2q3ɛ) for ɛ>0 unless NPcoNP/poly. He further proved that for q{3,4} the problem admits a near-optimal kernel of bit-size O˜(k2q3) and asked whether such a kernel is achievable for all integers q3. In this short paper, we settle this question in the affirmative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信