高倍率锂离子电池组件复合液相材料冷却系统设计

IF 6.4 2区 工程技术 Q1 MECHANICS
Jianfeng Wang , Bowei Chen , Fen Liu , Yuhan Li , Zhen Liu , Yongkai Jia , Wenyue Li , Chunyan Wang , Ji Zheng , Yanyan Wang
{"title":"高倍率锂离子电池组件复合液相材料冷却系统设计","authors":"Jianfeng Wang ,&nbsp;Bowei Chen ,&nbsp;Fen Liu ,&nbsp;Yuhan Li ,&nbsp;Zhen Liu ,&nbsp;Yongkai Jia ,&nbsp;Wenyue Li ,&nbsp;Chunyan Wang ,&nbsp;Ji Zheng ,&nbsp;Yanyan Wang","doi":"10.1016/j.icheatmasstransfer.2025.109306","DOIUrl":null,"url":null,"abstract":"<div><div>An efficient battery thermal management system is essential. In this paper, we propose a composite liquid and phase change material(PCM) cooling structure to solve the heat dissipation problem of lithium-ion batteries(LIBs) under high rate charging and discharging conditions. We study the influence of each factor of the cold plate on the heat dissipation performance for LIBs under 10C discharge using the single-factor analysis and orthogonal experiments. The results indicate that the heat dissipation performance is optimal when the coolant flow rate is 0.8 m/s, the fin angle is 60°, the longitudinal spacing of the fins is 15 mm, and the transverse spacing is 8 mm. The heat dissipation performance of composite cold plate is best when the phase change temperature is 35 °C and the thickness of PCM is 3 mm. After experimental test, the cooling system can control the maximum temperature(<em>T</em><sub><em>max</em></sub>) of the battery module below 39.8 °C. The maximum temperature difference(Δ<em>T</em><sub><em>max</em></sub>) of the battery is controlled within 1.6 °C. Battery energy consumption reduced by 10.7 %. In summary, composite liquid and phase change material cooling structure provides an effective solution with high heat dissipation efficiency and low power consumption for power-type lithium-ion battery modules.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"167 ","pages":"Article 109306"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of composite liquid and phase change material cooling system for high rate lithium-ion battery modules\",\"authors\":\"Jianfeng Wang ,&nbsp;Bowei Chen ,&nbsp;Fen Liu ,&nbsp;Yuhan Li ,&nbsp;Zhen Liu ,&nbsp;Yongkai Jia ,&nbsp;Wenyue Li ,&nbsp;Chunyan Wang ,&nbsp;Ji Zheng ,&nbsp;Yanyan Wang\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.109306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An efficient battery thermal management system is essential. In this paper, we propose a composite liquid and phase change material(PCM) cooling structure to solve the heat dissipation problem of lithium-ion batteries(LIBs) under high rate charging and discharging conditions. We study the influence of each factor of the cold plate on the heat dissipation performance for LIBs under 10C discharge using the single-factor analysis and orthogonal experiments. The results indicate that the heat dissipation performance is optimal when the coolant flow rate is 0.8 m/s, the fin angle is 60°, the longitudinal spacing of the fins is 15 mm, and the transverse spacing is 8 mm. The heat dissipation performance of composite cold plate is best when the phase change temperature is 35 °C and the thickness of PCM is 3 mm. After experimental test, the cooling system can control the maximum temperature(<em>T</em><sub><em>max</em></sub>) of the battery module below 39.8 °C. The maximum temperature difference(Δ<em>T</em><sub><em>max</em></sub>) of the battery is controlled within 1.6 °C. Battery energy consumption reduced by 10.7 %. In summary, composite liquid and phase change material cooling structure provides an effective solution with high heat dissipation efficiency and low power consumption for power-type lithium-ion battery modules.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"167 \",\"pages\":\"Article 109306\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325007328\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325007328","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

一个有效的电池热管理系统是必不可少的。为了解决锂离子电池在高倍率充放电条件下的散热问题,本文提出了一种复合相变材料(PCM)冷却结构。采用单因素分析和正交试验的方法,研究了冷板各因素对10C放电条件下锂电池散热性能的影响。结果表明:当冷却剂流量为0.8 m/s、翅片角度为60°、翅片纵向间距为15 mm、横向间距为8 mm时,散热性能最佳;当相变温度为35℃,PCM厚度为3mm时,复合冷板的散热性能最佳。经实验测试,该冷却系统可将电池模块的最高温度(Tmax)控制在39.8℃以下。电池最大温差(ΔTmax)控制在1.6℃以内。电池能耗降低10.7%。综上所述,复合液相材料冷却结构为动力型锂离子电池模块提供了高散热效率、低功耗的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of composite liquid and phase change material cooling system for high rate lithium-ion battery modules
An efficient battery thermal management system is essential. In this paper, we propose a composite liquid and phase change material(PCM) cooling structure to solve the heat dissipation problem of lithium-ion batteries(LIBs) under high rate charging and discharging conditions. We study the influence of each factor of the cold plate on the heat dissipation performance for LIBs under 10C discharge using the single-factor analysis and orthogonal experiments. The results indicate that the heat dissipation performance is optimal when the coolant flow rate is 0.8 m/s, the fin angle is 60°, the longitudinal spacing of the fins is 15 mm, and the transverse spacing is 8 mm. The heat dissipation performance of composite cold plate is best when the phase change temperature is 35 °C and the thickness of PCM is 3 mm. After experimental test, the cooling system can control the maximum temperature(Tmax) of the battery module below 39.8 °C. The maximum temperature difference(ΔTmax) of the battery is controlled within 1.6 °C. Battery energy consumption reduced by 10.7 %. In summary, composite liquid and phase change material cooling structure provides an effective solution with high heat dissipation efficiency and low power consumption for power-type lithium-ion battery modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信