废物增值策略:高效磁性超细牛毛粉的制备及其对酸性染料的吸附性能

IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xinyue Nian , Feifei Zhang , Jie Liu , Jianan Song
{"title":"废物增值策略:高效磁性超细牛毛粉的制备及其对酸性染料的吸附性能","authors":"Xinyue Nian ,&nbsp;Feifei Zhang ,&nbsp;Jie Liu ,&nbsp;Jianan Song","doi":"10.1016/j.bej.2025.109847","DOIUrl":null,"url":null,"abstract":"<div><div>To address the environmental issues caused by the accumulation of large amounts of animal hair generated during the leather production process, this study mechanically milled cattle hair waste (CHW) into ultrafine cattle hair powder (UCP), and a magnetic cattle hair powder adsorbent material (MUCP) was synthesized through an in-situ generation method using FeSO<sub>4</sub>·7 H<sub>2</sub>O and FeCl<sub>3</sub>·6 H<sub>2</sub>O as sources. Adsorption experiments were conducted under various conditions to investigate the adsorption performance of MUCP for acid dye. The results showed that lower pH levels led to higher dye removal rates. When the pH was 2, the dye removal rate reached 93.1 %. The adsorption process was consistent with the pseudo-second-order kinetics model and the Langmuir isotherm model. When 0.1 g of MUCP-8 was used to adsorb the dye solution with an initial concentration of 500 mg·L<sup>−1</sup>, pH 3, 45 ℃, and a duration time of 48 h, the maximum adsorption capacity was 699.30 mg·g<sup>−1</sup>. The adsorption mechanism of MUCP for acid dye mainly involved void filling, hydrogen bonding, and electrostatic attraction between protonated amino groups and negatively charged dye ions. MUCP has superparamagnetic properties, allowing easy and quick separation and recovery from the mixed solution under an external magnetic field after dye adsorption. This provides a new solution for bio-based adsorbent materials with magnetic properties in dye wastewater treatment and waste-to-resource methods.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"222 ","pages":"Article 109847"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waste valorization strategy: Fabrication of high-efficiency magnetic ultrafine cattle hair powder and its adsorption performance on acid dye\",\"authors\":\"Xinyue Nian ,&nbsp;Feifei Zhang ,&nbsp;Jie Liu ,&nbsp;Jianan Song\",\"doi\":\"10.1016/j.bej.2025.109847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the environmental issues caused by the accumulation of large amounts of animal hair generated during the leather production process, this study mechanically milled cattle hair waste (CHW) into ultrafine cattle hair powder (UCP), and a magnetic cattle hair powder adsorbent material (MUCP) was synthesized through an in-situ generation method using FeSO<sub>4</sub>·7 H<sub>2</sub>O and FeCl<sub>3</sub>·6 H<sub>2</sub>O as sources. Adsorption experiments were conducted under various conditions to investigate the adsorption performance of MUCP for acid dye. The results showed that lower pH levels led to higher dye removal rates. When the pH was 2, the dye removal rate reached 93.1 %. The adsorption process was consistent with the pseudo-second-order kinetics model and the Langmuir isotherm model. When 0.1 g of MUCP-8 was used to adsorb the dye solution with an initial concentration of 500 mg·L<sup>−1</sup>, pH 3, 45 ℃, and a duration time of 48 h, the maximum adsorption capacity was 699.30 mg·g<sup>−1</sup>. The adsorption mechanism of MUCP for acid dye mainly involved void filling, hydrogen bonding, and electrostatic attraction between protonated amino groups and negatively charged dye ions. MUCP has superparamagnetic properties, allowing easy and quick separation and recovery from the mixed solution under an external magnetic field after dye adsorption. This provides a new solution for bio-based adsorbent materials with magnetic properties in dye wastewater treatment and waste-to-resource methods.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"222 \",\"pages\":\"Article 109847\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X25002219\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25002219","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为解决皮革生产过程中产生的大量动物毛发堆积造成的环境问题,本研究以FeSO4·7 H2O和FeCl3·6 H2O为原料,将牛毛废料(CHW)机械研磨成超细牛毛粉(UCP),通过原位生成法合成磁性牛毛粉吸附材料(MUCP)。通过不同条件下的吸附实验,考察了MUCP对酸性染料的吸附性能。结果表明,pH值越低,染料去除率越高。当pH = 2时,染料去除率达到93.1 %。吸附过程符合拟二级动力学模型和Langmuir等温模型。以0.1 g的MUCP-8吸附初始浓度为500 mg·L−1、pH为3、温度为45℃、吸附时间为48 h的染料溶液,最大吸附量为699.30 mg·g−1。MUCP对酸性染料的吸附机制主要包括空隙填充、氢键、质子化氨基与带负电的染料离子之间的静电吸引。MUCP具有超顺磁性,可以在染料吸附后的外磁场下轻松快速地从混合溶液中分离和回收。这为磁性生物基吸附材料在染料废水处理和废物资源化方法中的应用提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Waste valorization strategy: Fabrication of high-efficiency magnetic ultrafine cattle hair powder and its adsorption performance on acid dye
To address the environmental issues caused by the accumulation of large amounts of animal hair generated during the leather production process, this study mechanically milled cattle hair waste (CHW) into ultrafine cattle hair powder (UCP), and a magnetic cattle hair powder adsorbent material (MUCP) was synthesized through an in-situ generation method using FeSO4·7 H2O and FeCl3·6 H2O as sources. Adsorption experiments were conducted under various conditions to investigate the adsorption performance of MUCP for acid dye. The results showed that lower pH levels led to higher dye removal rates. When the pH was 2, the dye removal rate reached 93.1 %. The adsorption process was consistent with the pseudo-second-order kinetics model and the Langmuir isotherm model. When 0.1 g of MUCP-8 was used to adsorb the dye solution with an initial concentration of 500 mg·L−1, pH 3, 45 ℃, and a duration time of 48 h, the maximum adsorption capacity was 699.30 mg·g−1. The adsorption mechanism of MUCP for acid dye mainly involved void filling, hydrogen bonding, and electrostatic attraction between protonated amino groups and negatively charged dye ions. MUCP has superparamagnetic properties, allowing easy and quick separation and recovery from the mixed solution under an external magnetic field after dye adsorption. This provides a new solution for bio-based adsorbent materials with magnetic properties in dye wastewater treatment and waste-to-resource methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Engineering Journal
Biochemical Engineering Journal 工程技术-工程:化工
CiteScore
7.10
自引率
5.10%
发文量
380
审稿时长
34 days
期刊介绍: The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology. The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields: Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics Biosensors and Biodevices including biofabrication and novel fuel cell development Bioseparations including scale-up and protein refolding/renaturation Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells Bioreactor Systems including characterization, optimization and scale-up Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis Protein Engineering including enzyme engineering and directed evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信