{"title":"基于q-Shehu变换的广义q-Mittag-Leffler函数在分数阶q-动力学方程中的应用","authors":"Mulugeta Dawud Ali , D.L. Suthar","doi":"10.1016/j.kjs.2025.100451","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the properties and applications of <span><math><mi>q</mi></math></span>-Mittag-Leffler functions with five parameters within the framework of fractional <span><math><mi>q</mi></math></span>-kinetic equations. We study the essential properties of these functions using several <span><math><mi>q</mi></math></span>-calculus operators, including the <span><math><mi>q</mi></math></span>-Riemann–Liouville integral, generalized <span><math><mi>q</mi></math></span>-Weyl derivative operators, and <span><math><mi>q</mi></math></span>-transform such as the <span><math><mi>q</mi></math></span>-Mellin and <span><math><mi>q</mi></math></span>-Shehu transforms. An original method for addressing fractional <span><math><mi>q</mi></math></span>-kinetic equations involving generalized <span><math><mi>q</mi></math></span>-Mittag-Leffler functions is presented, which utilizes the <span><math><mi>q</mi></math></span>-Shehu transform, a generalization of the <span><math><mi>q</mi></math></span>-Laplace transform. Further, we state some significant and special cases of our main results. Finally, we present the obtained solutions in the form of numerical graphs using MATLAB 23 software.</div></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"52 4","pages":"Article 100451"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the generalized q-Mittag-Leffler function to fractional q-kinetic equations via q-Shehu transform\",\"authors\":\"Mulugeta Dawud Ali , D.L. Suthar\",\"doi\":\"10.1016/j.kjs.2025.100451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the properties and applications of <span><math><mi>q</mi></math></span>-Mittag-Leffler functions with five parameters within the framework of fractional <span><math><mi>q</mi></math></span>-kinetic equations. We study the essential properties of these functions using several <span><math><mi>q</mi></math></span>-calculus operators, including the <span><math><mi>q</mi></math></span>-Riemann–Liouville integral, generalized <span><math><mi>q</mi></math></span>-Weyl derivative operators, and <span><math><mi>q</mi></math></span>-transform such as the <span><math><mi>q</mi></math></span>-Mellin and <span><math><mi>q</mi></math></span>-Shehu transforms. An original method for addressing fractional <span><math><mi>q</mi></math></span>-kinetic equations involving generalized <span><math><mi>q</mi></math></span>-Mittag-Leffler functions is presented, which utilizes the <span><math><mi>q</mi></math></span>-Shehu transform, a generalization of the <span><math><mi>q</mi></math></span>-Laplace transform. Further, we state some significant and special cases of our main results. Finally, we present the obtained solutions in the form of numerical graphs using MATLAB 23 software.</div></div>\",\"PeriodicalId\":17848,\"journal\":{\"name\":\"Kuwait Journal of Science\",\"volume\":\"52 4\",\"pages\":\"Article 100451\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307410825000951\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410825000951","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Application of the generalized q-Mittag-Leffler function to fractional q-kinetic equations via q-Shehu transform
This paper investigates the properties and applications of -Mittag-Leffler functions with five parameters within the framework of fractional -kinetic equations. We study the essential properties of these functions using several -calculus operators, including the -Riemann–Liouville integral, generalized -Weyl derivative operators, and -transform such as the -Mellin and -Shehu transforms. An original method for addressing fractional -kinetic equations involving generalized -Mittag-Leffler functions is presented, which utilizes the -Shehu transform, a generalization of the -Laplace transform. Further, we state some significant and special cases of our main results. Finally, we present the obtained solutions in the form of numerical graphs using MATLAB 23 software.
期刊介绍:
Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.