{"title":"基于gpu的FVM-DEM耦合框架及其在气液固三相流中的应用","authors":"Yangyang Zhang, Wenjie Xu, Yongzhi Chen","doi":"10.1016/j.partic.2025.06.009","DOIUrl":null,"url":null,"abstract":"<div><div>Gas-liquid-solid three-phase flow is common in various fields, making it crucial to accurately and efficiently describe its dynamic behaviors. To better perform the gas-liquid-solid three-phase simulations, a coupling code based on GPU named as CoSim-FVDEM is developed, which combines the finite volume method (FVM) and the discrete element method (DEM). This code encompasses unresolved, resolved and resolved-unresolved coupling methods, making it suitable for three-phase flow simulations involving solid particles of various sizes. A series of cases are conducted to validate the accuracy of the developed coupling algorithm, including complex dam breach flow, water entry test of a single sphere and multi-sphere within rotating roller. Finally, a gas-liquid-solid three-phase flow numerical experiment is performed, which involves the bi-disperse granular systems in a rotating roller. Base on the numerical results, the dynamic behaviors of the three-phase flow are analyzed and the computational efficiency is evaluated. The results indicate that the developed coupling code can better be used for the dynamic analysis of large-scale gas-liquid-solid three-phase flow.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"104 ","pages":"Pages 139-152"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GPU-based FVM–DEM coupling framework and its application on gas-liquid-solid three-phase flow\",\"authors\":\"Yangyang Zhang, Wenjie Xu, Yongzhi Chen\",\"doi\":\"10.1016/j.partic.2025.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gas-liquid-solid three-phase flow is common in various fields, making it crucial to accurately and efficiently describe its dynamic behaviors. To better perform the gas-liquid-solid three-phase simulations, a coupling code based on GPU named as CoSim-FVDEM is developed, which combines the finite volume method (FVM) and the discrete element method (DEM). This code encompasses unresolved, resolved and resolved-unresolved coupling methods, making it suitable for three-phase flow simulations involving solid particles of various sizes. A series of cases are conducted to validate the accuracy of the developed coupling algorithm, including complex dam breach flow, water entry test of a single sphere and multi-sphere within rotating roller. Finally, a gas-liquid-solid three-phase flow numerical experiment is performed, which involves the bi-disperse granular systems in a rotating roller. Base on the numerical results, the dynamic behaviors of the three-phase flow are analyzed and the computational efficiency is evaluated. The results indicate that the developed coupling code can better be used for the dynamic analysis of large-scale gas-liquid-solid three-phase flow.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"104 \",\"pages\":\"Pages 139-152\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200125001749\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125001749","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A GPU-based FVM–DEM coupling framework and its application on gas-liquid-solid three-phase flow
Gas-liquid-solid three-phase flow is common in various fields, making it crucial to accurately and efficiently describe its dynamic behaviors. To better perform the gas-liquid-solid three-phase simulations, a coupling code based on GPU named as CoSim-FVDEM is developed, which combines the finite volume method (FVM) and the discrete element method (DEM). This code encompasses unresolved, resolved and resolved-unresolved coupling methods, making it suitable for three-phase flow simulations involving solid particles of various sizes. A series of cases are conducted to validate the accuracy of the developed coupling algorithm, including complex dam breach flow, water entry test of a single sphere and multi-sphere within rotating roller. Finally, a gas-liquid-solid three-phase flow numerical experiment is performed, which involves the bi-disperse granular systems in a rotating roller. Base on the numerical results, the dynamic behaviors of the three-phase flow are analyzed and the computational efficiency is evaluated. The results indicate that the developed coupling code can better be used for the dynamic analysis of large-scale gas-liquid-solid three-phase flow.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.