Tingting Deng , Yongfeng Deng , Hang Liu , Fang Liu , Zhenshun Hong , Xueyu Geng
{"title":"从实验室研究到现场应用的污染土壤固化脱水综合修复技术","authors":"Tingting Deng , Yongfeng Deng , Hang Liu , Fang Liu , Zhenshun Hong , Xueyu Geng","doi":"10.1016/j.sandf.2025.101602","DOIUrl":null,"url":null,"abstract":"<div><div>Solidification/stabilization of heavy metal contaminated soils often falls short of achieving the desired quality due to challenges in effectively controlling mixing uniformity. Optimization of mixing equipment and construction technology is a common way to improve mixing uniformity. However, optimizing mixing equipment has high cost, limited site applicability and limited effect on improving uniformity. To solve the problem, a combined solidification/stabilization - vacuum dewatering technique (SSVD) was proposed, which is to increase the water to binder ratio to make the binder and heavy metal contaminated soils mixed evenly and then immediately vacuum dewatering. Its efficiency was explored through both laboratory experiments and a pilot project. Because zinc is a well-known factor that decreases compressive strength and cementation speed, zinc contaminated soil was studied. The findings indicate that the vacuum dewatering successfully removes water from solidified soils during the initial 12 h of setting and hardening in the field, indicating the feasibility of more water incorporation to raise the mixing workability. Furthermore, it can enhance the microstructure to prevent the migration of pollutant, and extract the heavy metals from the solidified mass by the cation exchanges. After 28 days of curing, laboratory tests showed a 1.9-4.1 times’ increment in strength and a 1.7-17.8 times’ reduction in permeability after dewatering. In the field, these values increase by 1.8 times and decrease by 1.7 times, respectively. The Zn<sup>2+</sup> observed diffusivity also decreases by 2.0 times after dewatering in the laboratory. Microstructure analysis reveals that the vacuum dewatering significantly reduces the porosity of the solidified matrix, thereby enhancing its integrity. The proposed technology holds potential for the application not only in the solidification/stabilization remediation but also in the soft ground improvement in term of the better workability and homogeneity, stronger densification and capsulation, and less pollutant retention and binder consumption.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101602"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated remediation through solidification and dewatering of contaminated soil from laboratory investigation to in-situ application\",\"authors\":\"Tingting Deng , Yongfeng Deng , Hang Liu , Fang Liu , Zhenshun Hong , Xueyu Geng\",\"doi\":\"10.1016/j.sandf.2025.101602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solidification/stabilization of heavy metal contaminated soils often falls short of achieving the desired quality due to challenges in effectively controlling mixing uniformity. Optimization of mixing equipment and construction technology is a common way to improve mixing uniformity. However, optimizing mixing equipment has high cost, limited site applicability and limited effect on improving uniformity. To solve the problem, a combined solidification/stabilization - vacuum dewatering technique (SSVD) was proposed, which is to increase the water to binder ratio to make the binder and heavy metal contaminated soils mixed evenly and then immediately vacuum dewatering. Its efficiency was explored through both laboratory experiments and a pilot project. Because zinc is a well-known factor that decreases compressive strength and cementation speed, zinc contaminated soil was studied. The findings indicate that the vacuum dewatering successfully removes water from solidified soils during the initial 12 h of setting and hardening in the field, indicating the feasibility of more water incorporation to raise the mixing workability. Furthermore, it can enhance the microstructure to prevent the migration of pollutant, and extract the heavy metals from the solidified mass by the cation exchanges. After 28 days of curing, laboratory tests showed a 1.9-4.1 times’ increment in strength and a 1.7-17.8 times’ reduction in permeability after dewatering. In the field, these values increase by 1.8 times and decrease by 1.7 times, respectively. The Zn<sup>2+</sup> observed diffusivity also decreases by 2.0 times after dewatering in the laboratory. Microstructure analysis reveals that the vacuum dewatering significantly reduces the porosity of the solidified matrix, thereby enhancing its integrity. The proposed technology holds potential for the application not only in the solidification/stabilization remediation but also in the soft ground improvement in term of the better workability and homogeneity, stronger densification and capsulation, and less pollutant retention and binder consumption.</div></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"65 4\",\"pages\":\"Article 101602\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080625000368\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000368","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Integrated remediation through solidification and dewatering of contaminated soil from laboratory investigation to in-situ application
Solidification/stabilization of heavy metal contaminated soils often falls short of achieving the desired quality due to challenges in effectively controlling mixing uniformity. Optimization of mixing equipment and construction technology is a common way to improve mixing uniformity. However, optimizing mixing equipment has high cost, limited site applicability and limited effect on improving uniformity. To solve the problem, a combined solidification/stabilization - vacuum dewatering technique (SSVD) was proposed, which is to increase the water to binder ratio to make the binder and heavy metal contaminated soils mixed evenly and then immediately vacuum dewatering. Its efficiency was explored through both laboratory experiments and a pilot project. Because zinc is a well-known factor that decreases compressive strength and cementation speed, zinc contaminated soil was studied. The findings indicate that the vacuum dewatering successfully removes water from solidified soils during the initial 12 h of setting and hardening in the field, indicating the feasibility of more water incorporation to raise the mixing workability. Furthermore, it can enhance the microstructure to prevent the migration of pollutant, and extract the heavy metals from the solidified mass by the cation exchanges. After 28 days of curing, laboratory tests showed a 1.9-4.1 times’ increment in strength and a 1.7-17.8 times’ reduction in permeability after dewatering. In the field, these values increase by 1.8 times and decrease by 1.7 times, respectively. The Zn2+ observed diffusivity also decreases by 2.0 times after dewatering in the laboratory. Microstructure analysis reveals that the vacuum dewatering significantly reduces the porosity of the solidified matrix, thereby enhancing its integrity. The proposed technology holds potential for the application not only in the solidification/stabilization remediation but also in the soft ground improvement in term of the better workability and homogeneity, stronger densification and capsulation, and less pollutant retention and binder consumption.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.