掺锌β-Ga2O3的第一性原理研究:电子、光电和热力学性质

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Xining Ma, Ningwei Qi, Min Zhang
{"title":"掺锌β-Ga2O3的第一性原理研究:电子、光电和热力学性质","authors":"Xining Ma,&nbsp;Ningwei Qi,&nbsp;Min Zhang","doi":"10.1016/j.physb.2025.417557","DOIUrl":null,"url":null,"abstract":"<div><div>Monoclinic β-Ga<sub>2</sub>O<sub>3</sub> is a promising ultrawide-bandgap semiconductor (4.9 eV) for power electronics and deep-ultraviolet optoelectronics; however, p-type doping still remains a formidable challenge. Using first-principles GGA + U calculations, we examine the site preference, structural stability, and the evolution of electronic, optical, and thermodynamic properties in Zn-doped Ga<sub>2</sub>O<sub>3</sub>. Zn preferentially substitutes tetrahedral Ga(1) with the lowest formation energy (5.03 eV) and induces negligible (&lt;1 %) lattice distortion, confirmed by phonon dispersion. Zn substitution narrows the bandgap from 5.17 eV to 4.98 eV and yields complete spin polarization at the conduction band minimum, driven by O-2p、Zn-3d、Ga-4s hybridization. Differential charge density and bond-population analyses reveal weakened Ga-O covalency and enhanced ionic character upon doping. Optically, Zn incorporation redshifts the main absorption peaks and lowers the dielectric-response intensity. Thermodynamic calculations show reduced Gibbs free energy and sustained high heat capacity (∼10R at 300 K), indicating improved thermal stability.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"715 ","pages":"Article 417557"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles investigation of Zn-doped β-Ga2O3: Electronic, optoelectronic, and thermodynamic properties\",\"authors\":\"Xining Ma,&nbsp;Ningwei Qi,&nbsp;Min Zhang\",\"doi\":\"10.1016/j.physb.2025.417557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monoclinic β-Ga<sub>2</sub>O<sub>3</sub> is a promising ultrawide-bandgap semiconductor (4.9 eV) for power electronics and deep-ultraviolet optoelectronics; however, p-type doping still remains a formidable challenge. Using first-principles GGA + U calculations, we examine the site preference, structural stability, and the evolution of electronic, optical, and thermodynamic properties in Zn-doped Ga<sub>2</sub>O<sub>3</sub>. Zn preferentially substitutes tetrahedral Ga(1) with the lowest formation energy (5.03 eV) and induces negligible (&lt;1 %) lattice distortion, confirmed by phonon dispersion. Zn substitution narrows the bandgap from 5.17 eV to 4.98 eV and yields complete spin polarization at the conduction band minimum, driven by O-2p、Zn-3d、Ga-4s hybridization. Differential charge density and bond-population analyses reveal weakened Ga-O covalency and enhanced ionic character upon doping. Optically, Zn incorporation redshifts the main absorption peaks and lowers the dielectric-response intensity. Thermodynamic calculations show reduced Gibbs free energy and sustained high heat capacity (∼10R at 300 K), indicating improved thermal stability.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"715 \",\"pages\":\"Article 417557\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092145262500674X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262500674X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

单斜斜β-Ga2O3是一种很有前途的超宽带隙半导体(4.9 eV),可用于电力电子和深紫外光电子学;然而,p型兴奋剂仍然是一个巨大的挑战。利用第一性原理GGA + U计算,我们研究了zn掺杂Ga2O3的位置偏好、结构稳定性以及电子、光学和热力学性质的演变。通过声子色散证实,Zn优先取代具有最低形成能(5.03 eV)的四面体Ga(1),并引起可忽略不计(< 1%)的晶格畸变。Zn取代使带隙从5.17 eV缩小到4.98 eV,并在O-2p、Zn-3d、Ga-4s杂化驱动下在导带最小值处产生完全的自旋极化。差电荷密度和键居分析表明,掺杂后Ga-O共价减弱,离子特性增强。在光学上,锌的掺入使主吸收峰红移,降低了介质响应强度。热力学计算表明,吉布斯自由能降低,热容持续高(300k时约10R),表明热稳定性得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-principles investigation of Zn-doped β-Ga2O3: Electronic, optoelectronic, and thermodynamic properties
Monoclinic β-Ga2O3 is a promising ultrawide-bandgap semiconductor (4.9 eV) for power electronics and deep-ultraviolet optoelectronics; however, p-type doping still remains a formidable challenge. Using first-principles GGA + U calculations, we examine the site preference, structural stability, and the evolution of electronic, optical, and thermodynamic properties in Zn-doped Ga2O3. Zn preferentially substitutes tetrahedral Ga(1) with the lowest formation energy (5.03 eV) and induces negligible (<1 %) lattice distortion, confirmed by phonon dispersion. Zn substitution narrows the bandgap from 5.17 eV to 4.98 eV and yields complete spin polarization at the conduction band minimum, driven by O-2p、Zn-3d、Ga-4s hybridization. Differential charge density and bond-population analyses reveal weakened Ga-O covalency and enhanced ionic character upon doping. Optically, Zn incorporation redshifts the main absorption peaks and lowers the dielectric-response intensity. Thermodynamic calculations show reduced Gibbs free energy and sustained high heat capacity (∼10R at 300 K), indicating improved thermal stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信