Salma M.S. Ahmad , Fatemeh Abdullah M. Ahmadi , Roberta Giordo , Gavino Casu , Gheyath K. Nasrallaha , Hatem Zayed , Gianfranco Pintus
{"title":"lncRNA GAS5/miR-21轴在癌症、纤维化、心血管和免疫疾病中的分子见解和新兴治疗观点","authors":"Salma M.S. Ahmad , Fatemeh Abdullah M. Ahmadi , Roberta Giordo , Gavino Casu , Gheyath K. Nasrallaha , Hatem Zayed , Gianfranco Pintus","doi":"10.1016/j.mrrev.2025.108551","DOIUrl":null,"url":null,"abstract":"<div><div>Non-coding RNAs (ncRNAs) have redefined the complexity of gene regulation, with the long non-coding (lncRNA) GAS5/miR-21 axis emerging as a critical determinant of cell fate across diverse pathological contexts. This review examines the molecular mechanisms by which GAS5 regulates miR-21 activity, thereby restoring tumor suppressor networks and controlling key pathways, including the PI3K/AKT, MAPK/ERK, and Wnt/β-catenin pathways. We detail how dysregulation of this axis fuels cancer progression, metastasis, therapy resistance, fibrosis, cardiovascular diseases, osteoporosis, osteoarthritis, and autoimmune conditions like systemic lupus erythematosus. Beyond its role as a master regulator of apoptosis, proliferation, and EMT, the GAS5/miR-21 interaction holds immense promise as a therapeutic target and a liquid biopsy biomarker. However, clinical translation demands solutions to major challenges, including RNA delivery barriers, context-dependent effects, and adaptive resistance. Leveraging multi-omics integration, gene-editing technologies, and personalized RNA therapeutics will be pivotal to overcoming these obstacles. By critically integrating current knowledge and outlining future directions, this review positions the GAS5/miR-21 axis at the forefront of next-generation ncRNA therapeutics. Harnessing its full potential could not only revolutionize treatment paradigms but also transform our understanding of RNA-driven disease networks.</div></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"796 ","pages":"Article 108551"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular insights and emerging therapeutic perspectives of the lncRNA GAS5/miR-21 axis in cancer, fibrosis, cardiovascular, and immune disorders\",\"authors\":\"Salma M.S. Ahmad , Fatemeh Abdullah M. Ahmadi , Roberta Giordo , Gavino Casu , Gheyath K. Nasrallaha , Hatem Zayed , Gianfranco Pintus\",\"doi\":\"10.1016/j.mrrev.2025.108551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-coding RNAs (ncRNAs) have redefined the complexity of gene regulation, with the long non-coding (lncRNA) GAS5/miR-21 axis emerging as a critical determinant of cell fate across diverse pathological contexts. This review examines the molecular mechanisms by which GAS5 regulates miR-21 activity, thereby restoring tumor suppressor networks and controlling key pathways, including the PI3K/AKT, MAPK/ERK, and Wnt/β-catenin pathways. We detail how dysregulation of this axis fuels cancer progression, metastasis, therapy resistance, fibrosis, cardiovascular diseases, osteoporosis, osteoarthritis, and autoimmune conditions like systemic lupus erythematosus. Beyond its role as a master regulator of apoptosis, proliferation, and EMT, the GAS5/miR-21 interaction holds immense promise as a therapeutic target and a liquid biopsy biomarker. However, clinical translation demands solutions to major challenges, including RNA delivery barriers, context-dependent effects, and adaptive resistance. Leveraging multi-omics integration, gene-editing technologies, and personalized RNA therapeutics will be pivotal to overcoming these obstacles. By critically integrating current knowledge and outlining future directions, this review positions the GAS5/miR-21 axis at the forefront of next-generation ncRNA therapeutics. Harnessing its full potential could not only revolutionize treatment paradigms but also transform our understanding of RNA-driven disease networks.</div></div>\",\"PeriodicalId\":49789,\"journal\":{\"name\":\"Mutation Research-Reviews in Mutation Research\",\"volume\":\"796 \",\"pages\":\"Article 108551\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Reviews in Mutation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383574225000225\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574225000225","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Molecular insights and emerging therapeutic perspectives of the lncRNA GAS5/miR-21 axis in cancer, fibrosis, cardiovascular, and immune disorders
Non-coding RNAs (ncRNAs) have redefined the complexity of gene regulation, with the long non-coding (lncRNA) GAS5/miR-21 axis emerging as a critical determinant of cell fate across diverse pathological contexts. This review examines the molecular mechanisms by which GAS5 regulates miR-21 activity, thereby restoring tumor suppressor networks and controlling key pathways, including the PI3K/AKT, MAPK/ERK, and Wnt/β-catenin pathways. We detail how dysregulation of this axis fuels cancer progression, metastasis, therapy resistance, fibrosis, cardiovascular diseases, osteoporosis, osteoarthritis, and autoimmune conditions like systemic lupus erythematosus. Beyond its role as a master regulator of apoptosis, proliferation, and EMT, the GAS5/miR-21 interaction holds immense promise as a therapeutic target and a liquid biopsy biomarker. However, clinical translation demands solutions to major challenges, including RNA delivery barriers, context-dependent effects, and adaptive resistance. Leveraging multi-omics integration, gene-editing technologies, and personalized RNA therapeutics will be pivotal to overcoming these obstacles. By critically integrating current knowledge and outlining future directions, this review positions the GAS5/miR-21 axis at the forefront of next-generation ncRNA therapeutics. Harnessing its full potential could not only revolutionize treatment paradigms but also transform our understanding of RNA-driven disease networks.
期刊介绍:
The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.