{"title":"用拉普拉斯变换方法对若干非线性分数物理问题的比较分析","authors":"Mohammad Alaroud","doi":"10.1016/j.padiff.2025.101253","DOIUrl":null,"url":null,"abstract":"<div><div>Both linear and nonlinear differential, partial equations of fractional order can be solved efficiently using the residual power series method (RPSM). Nevertheless, the process requires the residual function's (<em>n</em> − 1)ϱ fractional derivative(FD). We all know that figuring out the FD of a function can be difficult. A straightforward and effective analytical technique known as the Laplace transform-residual power series method (LT-RPSM) is used in this study to provide the approximate and exact solutions to nonlinear fractional partial differential equations(NFPDEs) under Caputo fractional differentiation including the nonlinear Fokker-Planck, nonlinear gas dynamics and nonlinear Klein-Gordon equations. The computations needed to find the coefficients of an expansion series are modest because the proposed method just requires the concept of an infinite limit. Three nonlinear fractional physical problems are successfully solved by the used investigation, which provides closed- form solutions and exact solutions in ordinary case, also a thorough graphical and numerical comparisons of the findings discovered. These outcomes are compared with existing solutions in the literature, especially in the meaning of absolute errors against the Laplace Adomin decompostion method LADM in light of different FD operators. Strong agreement between the results of the used method and several series solution techniques. Consequently, LT-RPSM can be considered a very successful technique and the most effective analytical algorithm to deal with numerous NFPDEs emerging in physics and engineering.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101253"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis using the Laplace transform approach for some nonlinear fractional physical problems\",\"authors\":\"Mohammad Alaroud\",\"doi\":\"10.1016/j.padiff.2025.101253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Both linear and nonlinear differential, partial equations of fractional order can be solved efficiently using the residual power series method (RPSM). Nevertheless, the process requires the residual function's (<em>n</em> − 1)ϱ fractional derivative(FD). We all know that figuring out the FD of a function can be difficult. A straightforward and effective analytical technique known as the Laplace transform-residual power series method (LT-RPSM) is used in this study to provide the approximate and exact solutions to nonlinear fractional partial differential equations(NFPDEs) under Caputo fractional differentiation including the nonlinear Fokker-Planck, nonlinear gas dynamics and nonlinear Klein-Gordon equations. The computations needed to find the coefficients of an expansion series are modest because the proposed method just requires the concept of an infinite limit. Three nonlinear fractional physical problems are successfully solved by the used investigation, which provides closed- form solutions and exact solutions in ordinary case, also a thorough graphical and numerical comparisons of the findings discovered. These outcomes are compared with existing solutions in the literature, especially in the meaning of absolute errors against the Laplace Adomin decompostion method LADM in light of different FD operators. Strong agreement between the results of the used method and several series solution techniques. Consequently, LT-RPSM can be considered a very successful technique and the most effective analytical algorithm to deal with numerous NFPDEs emerging in physics and engineering.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A comparative analysis using the Laplace transform approach for some nonlinear fractional physical problems
Both linear and nonlinear differential, partial equations of fractional order can be solved efficiently using the residual power series method (RPSM). Nevertheless, the process requires the residual function's (n − 1)ϱ fractional derivative(FD). We all know that figuring out the FD of a function can be difficult. A straightforward and effective analytical technique known as the Laplace transform-residual power series method (LT-RPSM) is used in this study to provide the approximate and exact solutions to nonlinear fractional partial differential equations(NFPDEs) under Caputo fractional differentiation including the nonlinear Fokker-Planck, nonlinear gas dynamics and nonlinear Klein-Gordon equations. The computations needed to find the coefficients of an expansion series are modest because the proposed method just requires the concept of an infinite limit. Three nonlinear fractional physical problems are successfully solved by the used investigation, which provides closed- form solutions and exact solutions in ordinary case, also a thorough graphical and numerical comparisons of the findings discovered. These outcomes are compared with existing solutions in the literature, especially in the meaning of absolute errors against the Laplace Adomin decompostion method LADM in light of different FD operators. Strong agreement between the results of the used method and several series solution techniques. Consequently, LT-RPSM can be considered a very successful technique and the most effective analytical algorithm to deal with numerous NFPDEs emerging in physics and engineering.