用于抗湿高性能燃料电池的有序动态网络质子交换膜。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-02 DOI:10.1002/smll.202504732
Xinming Du,Yijia Lei,Zhe Wang
{"title":"用于抗湿高性能燃料电池的有序动态网络质子交换膜。","authors":"Xinming Du,Yijia Lei,Zhe Wang","doi":"10.1002/smll.202504732","DOIUrl":null,"url":null,"abstract":"Maintaining proton conductivity of sulfonated proton exchange membranes (PEMs) under low humidity remains a critical challenge for fuel cell applications. This study presents an innovative interfacial engineering strategy through the integration of perfluorosulfonic acid nanofibers (PFSANF) with hydroxyl-functionalized Tröger's base polymer containing tertiary amine groups (HTB), constructing an ordered dynamic network membrane. The system achieves multi-level performance optimization via synergistic 3D hydrogen-bond networks and acid-base interactions: 1) Nanofiber create high-speed proton transport networks; 2) Hydroxyl and tertiary amine groups cooperatively enhance water retention while creating additional proton-hopping sites. The resulting ordered dynamic architecture demonstrates remarkable humidity-adaptive proton conduction, achieving a proton conductivity of 123 mS cm-1 - 1.9 times higher than commercial Nafion NC at 90 °C and 30% relative humidity (RH). The optimized membrane demonstrates outstanding peak power density of 1.2 W cm- 2 in H2/O2 fuel cells. This innovative interfacial engineering approach establishes a new paradigm for developing humidity-resilient proton exchange membranes through synergistic molecular design and ordered nanostructure.","PeriodicalId":228,"journal":{"name":"Small","volume":"199 1","pages":"e2504732"},"PeriodicalIF":12.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordered Dynamic Networks Proton Exchange Membrane for Humidity-Resilient High-Performance Fuel Cells.\",\"authors\":\"Xinming Du,Yijia Lei,Zhe Wang\",\"doi\":\"10.1002/smll.202504732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining proton conductivity of sulfonated proton exchange membranes (PEMs) under low humidity remains a critical challenge for fuel cell applications. This study presents an innovative interfacial engineering strategy through the integration of perfluorosulfonic acid nanofibers (PFSANF) with hydroxyl-functionalized Tröger's base polymer containing tertiary amine groups (HTB), constructing an ordered dynamic network membrane. The system achieves multi-level performance optimization via synergistic 3D hydrogen-bond networks and acid-base interactions: 1) Nanofiber create high-speed proton transport networks; 2) Hydroxyl and tertiary amine groups cooperatively enhance water retention while creating additional proton-hopping sites. The resulting ordered dynamic architecture demonstrates remarkable humidity-adaptive proton conduction, achieving a proton conductivity of 123 mS cm-1 - 1.9 times higher than commercial Nafion NC at 90 °C and 30% relative humidity (RH). The optimized membrane demonstrates outstanding peak power density of 1.2 W cm- 2 in H2/O2 fuel cells. This innovative interfacial engineering approach establishes a new paradigm for developing humidity-resilient proton exchange membranes through synergistic molecular design and ordered nanostructure.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"199 1\",\"pages\":\"e2504732\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202504732\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504732","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在低湿度条件下保持磺化质子交换膜(PEMs)的质子导电性仍然是燃料电池应用的关键挑战。本研究提出了一种创新的界面工程策略,通过将全氟磺酸纳米纤维(PFSANF)与羟基功能化的含有叔胺基(HTB)的Tröger基聚合物集成,构建有序的动态网络膜。该系统通过协同的三维氢键网络和酸碱相互作用实现了多层次的性能优化:1)纳米纤维创建高速质子传输网络;2)羟基和叔胺基团协同增强保水性,同时产生额外的质子跳位。在90°C和30%相对湿度(RH)下,质子电导率达到123 mS cm-1,是商用Nafion NC的1.9倍。优化后的膜在H2/O2燃料电池中表现出1.2 W cm- 2的峰值功率密度。这种创新的界面工程方法为通过协同分子设计和有序纳米结构开发抗湿质子交换膜建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ordered Dynamic Networks Proton Exchange Membrane for Humidity-Resilient High-Performance Fuel Cells.
Maintaining proton conductivity of sulfonated proton exchange membranes (PEMs) under low humidity remains a critical challenge for fuel cell applications. This study presents an innovative interfacial engineering strategy through the integration of perfluorosulfonic acid nanofibers (PFSANF) with hydroxyl-functionalized Tröger's base polymer containing tertiary amine groups (HTB), constructing an ordered dynamic network membrane. The system achieves multi-level performance optimization via synergistic 3D hydrogen-bond networks and acid-base interactions: 1) Nanofiber create high-speed proton transport networks; 2) Hydroxyl and tertiary amine groups cooperatively enhance water retention while creating additional proton-hopping sites. The resulting ordered dynamic architecture demonstrates remarkable humidity-adaptive proton conduction, achieving a proton conductivity of 123 mS cm-1 - 1.9 times higher than commercial Nafion NC at 90 °C and 30% relative humidity (RH). The optimized membrane demonstrates outstanding peak power density of 1.2 W cm- 2 in H2/O2 fuel cells. This innovative interfacial engineering approach establishes a new paradigm for developing humidity-resilient proton exchange membranes through synergistic molecular design and ordered nanostructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信