Yujie Luo,Chuanda Zhu,Xuefei Guo,Yunfei Xie,Yu Sun,Dan Lu,Yufei Xia,Zhiqiang Lin,Fuping You
{"title":"设计具有非典型钙晶体结构的脂质纳米颗粒以增强ifn β介导的免疫治疗。","authors":"Yujie Luo,Chuanda Zhu,Xuefei Guo,Yunfei Xie,Yu Sun,Dan Lu,Yufei Xia,Zhiqiang Lin,Fuping You","doi":"10.1002/adma.202419870","DOIUrl":null,"url":null,"abstract":"Immune checkpoint inhibitors have revolutionized cancer therapy; however, many patients exhibit suboptimal responses, which is due to inadequate T cell priming by the innate immune response. Metal ions play a critical role in modulating the innate immune response. However, the mechanisms by which metal ions facilitate dendritic cell maturation through the activation of interferon remain poorly understood. This research identifies a nanomaterial Calcium phosphate-containing liposome (NanoCa), characterized by an atypical crystal structure and pH-responsive profile. NanoCa promotes bone marrow-derived dendritic cell maturation and exhibits antiviral effects and anti-tumor properties in different tumor models. Also, NanoCa acts as an immunostimulant by fostering antibody production. Furthermore, when combined with programmed cell death 1 receptor (PD-1) blocking antibodies, NanoCa synergistically enhances anti-tumor efficacy in CT26 models. Mechanistically, NanoCa rapidly releases Ca2+ via the lysosome pathway post-endocytosis, subsequently triggering interferon through the Ca2+-calcineurin (CaN) - nuclear factor of activated T cells 2 (NFATc2) - protein kinase C beta (PKCβ) - interferon regulatory factor 3 (IRF3) signal pathway. Single-cell RNA sequencing (scRNA-seq) shows NanoCa increases the population of tumoral infiltrating dendritic cell (DC), C1qc+ TAM, and CD8T_eff cells and decreases the CD8T_ex and immunosuppressive SPP1+ TAM population in tumor-draining lymph nodes. Overall, NanoCa shows translational potential for anti-tumor immune therapeutics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"29 1","pages":"e2419870"},"PeriodicalIF":27.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering a Lipid Nanoparticle with Atypical Calcium Crystal Structure for Enhanced IFNβ-Mediated Immunotherapy.\",\"authors\":\"Yujie Luo,Chuanda Zhu,Xuefei Guo,Yunfei Xie,Yu Sun,Dan Lu,Yufei Xia,Zhiqiang Lin,Fuping You\",\"doi\":\"10.1002/adma.202419870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immune checkpoint inhibitors have revolutionized cancer therapy; however, many patients exhibit suboptimal responses, which is due to inadequate T cell priming by the innate immune response. Metal ions play a critical role in modulating the innate immune response. However, the mechanisms by which metal ions facilitate dendritic cell maturation through the activation of interferon remain poorly understood. This research identifies a nanomaterial Calcium phosphate-containing liposome (NanoCa), characterized by an atypical crystal structure and pH-responsive profile. NanoCa promotes bone marrow-derived dendritic cell maturation and exhibits antiviral effects and anti-tumor properties in different tumor models. Also, NanoCa acts as an immunostimulant by fostering antibody production. Furthermore, when combined with programmed cell death 1 receptor (PD-1) blocking antibodies, NanoCa synergistically enhances anti-tumor efficacy in CT26 models. Mechanistically, NanoCa rapidly releases Ca2+ via the lysosome pathway post-endocytosis, subsequently triggering interferon through the Ca2+-calcineurin (CaN) - nuclear factor of activated T cells 2 (NFATc2) - protein kinase C beta (PKCβ) - interferon regulatory factor 3 (IRF3) signal pathway. Single-cell RNA sequencing (scRNA-seq) shows NanoCa increases the population of tumoral infiltrating dendritic cell (DC), C1qc+ TAM, and CD8T_eff cells and decreases the CD8T_ex and immunosuppressive SPP1+ TAM population in tumor-draining lymph nodes. Overall, NanoCa shows translational potential for anti-tumor immune therapeutics.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"29 1\",\"pages\":\"e2419870\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202419870\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419870","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering a Lipid Nanoparticle with Atypical Calcium Crystal Structure for Enhanced IFNβ-Mediated Immunotherapy.
Immune checkpoint inhibitors have revolutionized cancer therapy; however, many patients exhibit suboptimal responses, which is due to inadequate T cell priming by the innate immune response. Metal ions play a critical role in modulating the innate immune response. However, the mechanisms by which metal ions facilitate dendritic cell maturation through the activation of interferon remain poorly understood. This research identifies a nanomaterial Calcium phosphate-containing liposome (NanoCa), characterized by an atypical crystal structure and pH-responsive profile. NanoCa promotes bone marrow-derived dendritic cell maturation and exhibits antiviral effects and anti-tumor properties in different tumor models. Also, NanoCa acts as an immunostimulant by fostering antibody production. Furthermore, when combined with programmed cell death 1 receptor (PD-1) blocking antibodies, NanoCa synergistically enhances anti-tumor efficacy in CT26 models. Mechanistically, NanoCa rapidly releases Ca2+ via the lysosome pathway post-endocytosis, subsequently triggering interferon through the Ca2+-calcineurin (CaN) - nuclear factor of activated T cells 2 (NFATc2) - protein kinase C beta (PKCβ) - interferon regulatory factor 3 (IRF3) signal pathway. Single-cell RNA sequencing (scRNA-seq) shows NanoCa increases the population of tumoral infiltrating dendritic cell (DC), C1qc+ TAM, and CD8T_eff cells and decreases the CD8T_ex and immunosuppressive SPP1+ TAM population in tumor-draining lymph nodes. Overall, NanoCa shows translational potential for anti-tumor immune therapeutics.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.