{"title":"用于难治性伤口监测的人工智能辅助导电水凝胶敷料。","authors":"Yumo She,He Liu,Hailiang Yuan,Yiqi Li,Xunjie Liu,Ruonan Liu,Mengyao Wang,Tingting Wang,Lina Wang,Meihan Liu,Wenyu Wan,Ye Tian,Kai Zhang","doi":"10.1007/s40820-025-01834-w","DOIUrl":null,"url":null,"abstract":"Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings. However, certain challenges, including surgical difficulty, lengthy recovery times, and a high recurrence rate persist. Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements. Therefore, this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing, the materials selection of conductive hydrogel dressings used for wound monitoring, focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals, proving invaluable for non-invasive, real-time evaluation of wound condition to encourage wound healing. Notably, the research of artificial intelligence (AI) model based on sensor derived data to predict the wound healing state, AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing. Finally, refractory wounds including pressure ulcers, diabetes ulcers and articular wounds, and the corresponding wound monitoring and healing process are discussed in detail. This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":"319"},"PeriodicalIF":36.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Assisted Conductive Hydrogel Dressings for Refractory Wounds Monitoring.\",\"authors\":\"Yumo She,He Liu,Hailiang Yuan,Yiqi Li,Xunjie Liu,Ruonan Liu,Mengyao Wang,Tingting Wang,Lina Wang,Meihan Liu,Wenyu Wan,Ye Tian,Kai Zhang\",\"doi\":\"10.1007/s40820-025-01834-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings. However, certain challenges, including surgical difficulty, lengthy recovery times, and a high recurrence rate persist. Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements. Therefore, this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing, the materials selection of conductive hydrogel dressings used for wound monitoring, focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals, proving invaluable for non-invasive, real-time evaluation of wound condition to encourage wound healing. Notably, the research of artificial intelligence (AI) model based on sensor derived data to predict the wound healing state, AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing. Finally, refractory wounds including pressure ulcers, diabetes ulcers and articular wounds, and the corresponding wound monitoring and healing process are discussed in detail. This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"16 1\",\"pages\":\"319\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-025-01834-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01834-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Artificial Intelligence-Assisted Conductive Hydrogel Dressings for Refractory Wounds Monitoring.
Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings. However, certain challenges, including surgical difficulty, lengthy recovery times, and a high recurrence rate persist. Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements. Therefore, this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing, the materials selection of conductive hydrogel dressings used for wound monitoring, focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals, proving invaluable for non-invasive, real-time evaluation of wound condition to encourage wound healing. Notably, the research of artificial intelligence (AI) model based on sensor derived data to predict the wound healing state, AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing. Finally, refractory wounds including pressure ulcers, diabetes ulcers and articular wounds, and the corresponding wound monitoring and healing process are discussed in detail. This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.