初始速度和横向滑动角对纳米液滴在超疏水表面聚结诱发跳跃的影响

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yong Zou, Ben Pan, Zihan Liu, Mingjun Liao and Fangfang Xie*, 
{"title":"初始速度和横向滑动角对纳米液滴在超疏水表面聚结诱发跳跃的影响","authors":"Yong Zou,&nbsp;Ben Pan,&nbsp;Zihan Liu,&nbsp;Mingjun Liao and Fangfang Xie*,&nbsp;","doi":"10.1021/acs.langmuir.5c02889","DOIUrl":null,"url":null,"abstract":"<p >This study employs molecular dynamics simulations to comprehensively investigate nanoscale droplet coalescence-induced jumping dynamics on superhydrophobic surfaces, focusing on the coupled effects of initial Weber numbers (<i>We</i>) and lateral sliding angles (<i>θ</i>). The research systematically analyzes dimensionless jumping velocity, jumping time, droplet centroid trajectories, droplet deformation (length-to-height ratio), and average liquid bridge growth rates under varying conditions. Results reveal that smaller lateral angles (0°, 30°) favor higher vertical jumping velocities and stable droplet trajectories at lower Weber numbers, with clear adherence to inertia-capillary scaling laws. Conversely, larger lateral angles (60°, 90°) result in substantial reductions in vertical jumping velocity due to increased lateral momentum and enhanced horizontal spreading. The novel energy analysis illustrates that the efficiency of kinetic energy conversion significantly decreases as lateral angles and Weber numbers increase, primarily due to intensified internal shear dissipation and lateral momentum dispersion. This comprehensive analysis deepens the understanding of nanoscale droplet coalescence dynamics and provides crucial insights for optimizing droplet-based thermal management and surface technologies.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 27","pages":"18354–18368"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Initial Velocity and Lateral Sliding Angle on Coalescence-Induced Jumping of Nanodroplets on Superhydrophobic Surfaces\",\"authors\":\"Yong Zou,&nbsp;Ben Pan,&nbsp;Zihan Liu,&nbsp;Mingjun Liao and Fangfang Xie*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c02889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study employs molecular dynamics simulations to comprehensively investigate nanoscale droplet coalescence-induced jumping dynamics on superhydrophobic surfaces, focusing on the coupled effects of initial Weber numbers (<i>We</i>) and lateral sliding angles (<i>θ</i>). The research systematically analyzes dimensionless jumping velocity, jumping time, droplet centroid trajectories, droplet deformation (length-to-height ratio), and average liquid bridge growth rates under varying conditions. Results reveal that smaller lateral angles (0°, 30°) favor higher vertical jumping velocities and stable droplet trajectories at lower Weber numbers, with clear adherence to inertia-capillary scaling laws. Conversely, larger lateral angles (60°, 90°) result in substantial reductions in vertical jumping velocity due to increased lateral momentum and enhanced horizontal spreading. The novel energy analysis illustrates that the efficiency of kinetic energy conversion significantly decreases as lateral angles and Weber numbers increase, primarily due to intensified internal shear dissipation and lateral momentum dispersion. This comprehensive analysis deepens the understanding of nanoscale droplet coalescence dynamics and provides crucial insights for optimizing droplet-based thermal management and surface technologies.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 27\",\"pages\":\"18354–18368\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02889\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02889","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用分子动力学模拟方法,全面研究了纳米尺度液滴在超疏水表面聚结诱导的跳跃动力学,重点研究了初始韦伯数(We)和横向滑动角(θ)的耦合效应。研究系统分析了不同条件下的无量纲跳跃速度、跳跃时间、液滴质心轨迹、液滴变形(长高比)和平均液桥增长率。结果表明,较小的横向角(0°,30°)有利于较高的垂直跳跃速度和较低韦伯数下稳定的液滴轨迹,并明显符合惯性-毛细标度定律。相反,较大的侧倾角(60°、90°)会导致垂直跳跃速度大幅降低,因为侧向动量增加,水平扩散增强。新的能量分析表明,随着侧向角和韦伯数的增加,动能转换效率显著降低,这主要是由于内部剪切耗散和侧向动量弥散加剧。这项全面的分析加深了对纳米尺度液滴聚结动力学的理解,并为优化基于液滴的热管理和表面技术提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Initial Velocity and Lateral Sliding Angle on Coalescence-Induced Jumping of Nanodroplets on Superhydrophobic Surfaces

Influence of Initial Velocity and Lateral Sliding Angle on Coalescence-Induced Jumping of Nanodroplets on Superhydrophobic Surfaces

This study employs molecular dynamics simulations to comprehensively investigate nanoscale droplet coalescence-induced jumping dynamics on superhydrophobic surfaces, focusing on the coupled effects of initial Weber numbers (We) and lateral sliding angles (θ). The research systematically analyzes dimensionless jumping velocity, jumping time, droplet centroid trajectories, droplet deformation (length-to-height ratio), and average liquid bridge growth rates under varying conditions. Results reveal that smaller lateral angles (0°, 30°) favor higher vertical jumping velocities and stable droplet trajectories at lower Weber numbers, with clear adherence to inertia-capillary scaling laws. Conversely, larger lateral angles (60°, 90°) result in substantial reductions in vertical jumping velocity due to increased lateral momentum and enhanced horizontal spreading. The novel energy analysis illustrates that the efficiency of kinetic energy conversion significantly decreases as lateral angles and Weber numbers increase, primarily due to intensified internal shear dissipation and lateral momentum dispersion. This comprehensive analysis deepens the understanding of nanoscale droplet coalescence dynamics and provides crucial insights for optimizing droplet-based thermal management and surface technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信