提高质子与ATP比值的ATP合酶工程

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hiroshi Ueno, Kiyoto Yasuda, Norie Hamaguchi-Suzuki, Riku Marui, Naruhiko Adachi, Toshiya Senda, Takeshi Murata, Hiroyuki Noji
{"title":"提高质子与ATP比值的ATP合酶工程","authors":"Hiroshi Ueno, Kiyoto Yasuda, Norie Hamaguchi-Suzuki, Riku Marui, Naruhiko Adachi, Toshiya Senda, Takeshi Murata, Hiroyuki Noji","doi":"10.1038/s41467-025-61227-w","DOIUrl":null,"url":null,"abstract":"<p>F<sub>o</sub>F<sub>1</sub>-ATP synthase (F<sub>o</sub>F<sub>1</sub>) interconverts the energy of the proton motive force (<i>pmf</i>) and that of ATP through the mechanical rotation. The H<sup>+</sup>/ATP ratio, one of the most crucial parameters in bioenergetics, varies among species due to differences in the number of H<sup>+</sup>-binding c-subunits, resulting in H<sup>+</sup>/ATP ratios ranging from 2.7 to 5. In this study, we seek to significantly enhance the H<sup>+</sup>/ATP ratio by employing an alternative approach that differs from that of nature. We engineer F<sub>o</sub>F<sub>1</sub> to form multiple peripheral stalks, each bound to a proton-conducting a-subunit. The engineered F<sub>o</sub>F<sub>1</sub> exhibits an H<sup>+</sup>/ATP ratio of 5.8, surpassing the highest ratios found in naturally occurring F<sub>o</sub>F<sub>1</sub>s, enabling ATP synthesis under low <i>pmf</i> conditions where wild-type enzymes cannot synthesize ATP. Structural analysis reveals that the engineered F<sub>o</sub>F<sub>1</sub> forms up to three peripheral stalks and a-subunits. This study not only provides valuable insights into the H<sup>+</sup>-transport mechanism of F<sub>o</sub>F<sub>1</sub> but also opens up possibilities for engineering the foundation of cellular bioenergetics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"48 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of ATP synthase for enhancement of proton-to-ATP ratio\",\"authors\":\"Hiroshi Ueno, Kiyoto Yasuda, Norie Hamaguchi-Suzuki, Riku Marui, Naruhiko Adachi, Toshiya Senda, Takeshi Murata, Hiroyuki Noji\",\"doi\":\"10.1038/s41467-025-61227-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>F<sub>o</sub>F<sub>1</sub>-ATP synthase (F<sub>o</sub>F<sub>1</sub>) interconverts the energy of the proton motive force (<i>pmf</i>) and that of ATP through the mechanical rotation. The H<sup>+</sup>/ATP ratio, one of the most crucial parameters in bioenergetics, varies among species due to differences in the number of H<sup>+</sup>-binding c-subunits, resulting in H<sup>+</sup>/ATP ratios ranging from 2.7 to 5. In this study, we seek to significantly enhance the H<sup>+</sup>/ATP ratio by employing an alternative approach that differs from that of nature. We engineer F<sub>o</sub>F<sub>1</sub> to form multiple peripheral stalks, each bound to a proton-conducting a-subunit. The engineered F<sub>o</sub>F<sub>1</sub> exhibits an H<sup>+</sup>/ATP ratio of 5.8, surpassing the highest ratios found in naturally occurring F<sub>o</sub>F<sub>1</sub>s, enabling ATP synthesis under low <i>pmf</i> conditions where wild-type enzymes cannot synthesize ATP. Structural analysis reveals that the engineered F<sub>o</sub>F<sub>1</sub> forms up to three peripheral stalks and a-subunits. This study not only provides valuable insights into the H<sup>+</sup>-transport mechanism of F<sub>o</sub>F<sub>1</sub> but also opens up possibilities for engineering the foundation of cellular bioenergetics.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61227-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61227-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

FoF1-ATP合成酶(FoF1)通过机械旋转将质子动力(pmf)能量与ATP能量相互转换。H+/ATP比率是生物能量学中最重要的参数之一,由于H+结合c亚基的数量不同,不同物种的H+/ATP比率在2.7 ~ 5之间。在这项研究中,我们试图通过采用一种不同于自然的替代方法来显着提高H+/ATP比率。我们设计FoF1形成多个外围茎,每个茎与一个质子传导a亚基结合。工程FoF1的H+/ATP比率为5.8,超过了天然FoF1的最高比率,使其能够在低pmf条件下合成ATP,而野生型酶无法合成ATP。结构分析表明,改造后的FoF1形成了三个外周茎和a亚基。这项研究不仅为FoF1的H+转运机制提供了有价值的见解,而且为细胞生物能量学的工程基础开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering of ATP synthase for enhancement of proton-to-ATP ratio

Engineering of ATP synthase for enhancement of proton-to-ATP ratio

FoF1-ATP synthase (FoF1) interconverts the energy of the proton motive force (pmf) and that of ATP through the mechanical rotation. The H+/ATP ratio, one of the most crucial parameters in bioenergetics, varies among species due to differences in the number of H+-binding c-subunits, resulting in H+/ATP ratios ranging from 2.7 to 5. In this study, we seek to significantly enhance the H+/ATP ratio by employing an alternative approach that differs from that of nature. We engineer FoF1 to form multiple peripheral stalks, each bound to a proton-conducting a-subunit. The engineered FoF1 exhibits an H+/ATP ratio of 5.8, surpassing the highest ratios found in naturally occurring FoF1s, enabling ATP synthesis under low pmf conditions where wild-type enzymes cannot synthesize ATP. Structural analysis reveals that the engineered FoF1 forms up to three peripheral stalks and a-subunits. This study not only provides valuable insights into the H+-transport mechanism of FoF1 but also opens up possibilities for engineering the foundation of cellular bioenergetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信