柔性的超低介电聚酰亚胺气凝胶通过10分钟的环境压力吹干制备,用于高增益Sub-6 GHz贴片天线

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Jiancheng Sun, Chi Zhang, Rubing Zhang
{"title":"柔性的超低介电聚酰亚胺气凝胶通过10分钟的环境压力吹干制备,用于高增益Sub-6 GHz贴片天线","authors":"Jiancheng Sun, Chi Zhang, Rubing Zhang","doi":"10.1016/j.cej.2025.165571","DOIUrl":null,"url":null,"abstract":"Conventional rigid patch antennas, constrained by high-permittivity substrates (<em>ε</em><sub><em>r</em></sub> &gt; 3.0) with severe dielectric loss (<em>tanδ</em> &gt; 0.02), suffer from catastrophic performance degradation at elevated frequencies (&gt;3 GHz) and inherent inflexibility that fundamentally prohibits their integration in wearable electronics. This work presents a breakthrough in synthesizing PMMA-reinforced polyimide aerogels (PIAs) via a 10-min ambient pressure drying (APD) strategy, enabling tunable porosity (&gt;90%) and ultra-low dielectric constants (<em>ε</em><sub><em>r</em></sub> = 1.35, <em>tanδ</em> &lt; 0.01). The incorporation of PMMA into the PI matrix endows the aerogel skeleton with outstanding mechanical resilience (tensile strength of 7.2 MPa and fracture energy of 45.8 kJ/m<sup>2</sup>), while effectively suppressing capillary-induced shrinkage to below 2.1% during solvent evaporation. The synergistic interplay between PMMA encapsulation and APD-optimized solvent exchange yields a hierarchical nanoporous structure (30 nm average pore size) with exceptional thermal insulation (0.036 W/m·K). When deployed as a substrate for flexible Sub-6 GHz patch antennas, the aerogel exhibits 106% gain enhancement (9.92 dBi) and broad impedance bandwidth (3.862–3.941 GHz), outperforming conventional FR-4 substrates. This work establishes a scalable, low-cost paradigm for multifunctional aerogels in wearable electronics and high-frequency communication systems.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"27 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible, ultra-low dielectric polyimide aerogels prepared via 10-minute ambient pressure blow-drying for high-gain Sub-6 GHz patch antenna\",\"authors\":\"Jiancheng Sun, Chi Zhang, Rubing Zhang\",\"doi\":\"10.1016/j.cej.2025.165571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional rigid patch antennas, constrained by high-permittivity substrates (<em>ε</em><sub><em>r</em></sub> &gt; 3.0) with severe dielectric loss (<em>tanδ</em> &gt; 0.02), suffer from catastrophic performance degradation at elevated frequencies (&gt;3 GHz) and inherent inflexibility that fundamentally prohibits their integration in wearable electronics. This work presents a breakthrough in synthesizing PMMA-reinforced polyimide aerogels (PIAs) via a 10-min ambient pressure drying (APD) strategy, enabling tunable porosity (&gt;90%) and ultra-low dielectric constants (<em>ε</em><sub><em>r</em></sub> = 1.35, <em>tanδ</em> &lt; 0.01). The incorporation of PMMA into the PI matrix endows the aerogel skeleton with outstanding mechanical resilience (tensile strength of 7.2 MPa and fracture energy of 45.8 kJ/m<sup>2</sup>), while effectively suppressing capillary-induced shrinkage to below 2.1% during solvent evaporation. The synergistic interplay between PMMA encapsulation and APD-optimized solvent exchange yields a hierarchical nanoporous structure (30 nm average pore size) with exceptional thermal insulation (0.036 W/m·K). When deployed as a substrate for flexible Sub-6 GHz patch antennas, the aerogel exhibits 106% gain enhancement (9.92 dBi) and broad impedance bandwidth (3.862–3.941 GHz), outperforming conventional FR-4 substrates. This work establishes a scalable, low-cost paradigm for multifunctional aerogels in wearable electronics and high-frequency communication systems.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2025.165571\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.165571","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的刚性贴片天线受到高介电常数衬底(εr >; 3.0)和严重介电损耗(tanδ >; 0.02)的限制,在高频率(>3 GHz)和固有的不灵活性下遭受灾难性的性能下降,从根本上阻碍了它们在可穿戴电子产品中的集成。这项工作提出了通过10分钟的环境压力干燥(APD)策略合成pmma增强聚酰亚胺气凝胶(PIAs)的突破,实现了可调孔隙率(>90%)和超低介电常数(εr = 1.35,tanδ <; 0.01)。PMMA加入到PI基质中,使气凝胶骨架具有优异的机械回弹性(抗拉强度为7.2 MPa,断裂能为45.8 kJ/m2),同时有效地抑制了溶剂蒸发过程中毛细血管引起的收缩,收缩率低于2.1%。PMMA包封和apd优化的溶剂交换之间的协同作用产生了分层纳米孔结构(平均孔径30 nm),具有优异的绝热性能(0.036 W/m·K)。当作为柔性Sub-6 GHz贴片天线的衬底部署时,气凝胶表现出106%的增益增强(9.92 dBi)和宽阻抗带宽(3.862-3.941 GHz),优于传统的FR-4衬底。这项工作为可穿戴电子产品和高频通信系统中的多功能气凝胶建立了一个可扩展的、低成本的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible, ultra-low dielectric polyimide aerogels prepared via 10-minute ambient pressure blow-drying for high-gain Sub-6 GHz patch antenna
Conventional rigid patch antennas, constrained by high-permittivity substrates (εr > 3.0) with severe dielectric loss (tanδ > 0.02), suffer from catastrophic performance degradation at elevated frequencies (>3 GHz) and inherent inflexibility that fundamentally prohibits their integration in wearable electronics. This work presents a breakthrough in synthesizing PMMA-reinforced polyimide aerogels (PIAs) via a 10-min ambient pressure drying (APD) strategy, enabling tunable porosity (>90%) and ultra-low dielectric constants (εr = 1.35, tanδ < 0.01). The incorporation of PMMA into the PI matrix endows the aerogel skeleton with outstanding mechanical resilience (tensile strength of 7.2 MPa and fracture energy of 45.8 kJ/m2), while effectively suppressing capillary-induced shrinkage to below 2.1% during solvent evaporation. The synergistic interplay between PMMA encapsulation and APD-optimized solvent exchange yields a hierarchical nanoporous structure (30 nm average pore size) with exceptional thermal insulation (0.036 W/m·K). When deployed as a substrate for flexible Sub-6 GHz patch antennas, the aerogel exhibits 106% gain enhancement (9.92 dBi) and broad impedance bandwidth (3.862–3.941 GHz), outperforming conventional FR-4 substrates. This work establishes a scalable, low-cost paradigm for multifunctional aerogels in wearable electronics and high-frequency communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信