Jennifer Erin Dawson, Iris Nira Smith, Ann Marie Tushar, Charis Eng
{"title":"通过综合建模和突变预测阐明PTEN构象动力学和磷酸酶调控","authors":"Jennifer Erin Dawson, Iris Nira Smith, Ann Marie Tushar, Charis Eng","doi":"10.1016/j.str.2025.06.002","DOIUrl":null,"url":null,"abstract":"<em>PTEN</em> (Phosphatase and TENsin homolog deleted on chromosome ten) is a major tumor suppressor gene that is frequently mutated or lost under cancerous conditions. PTEN is a dual-specificity phosphatase that negatively regulates the PI3K/AKT/mTOR signaling pathway at the plasma membrane (PM). Its functional regulation and cellular localization are known to be conformationally driven. Access to the PM is phosphoregulated by open and closed PTEN forms. However, clarifying the underlying structural mechanisms is still an open avenue of research. Here, we apply an integrative structural modeling approach, combining coarse-grained and all-atom molecular dynamics with experimental crosslinking mass spectrometry. Conformational exchange between an “eased” form and a “strained” form brings the protein’s phosphatase and C2 domains closer together, blocking the catalytic site, and affecting the loops involved in PM binding. Our full-length PTEN models, AlphaMissense, and RaSP were used to better predict the consequences of PTEN mutations.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"51 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating PTEN conformational dynamics and phosphatase regulation via integrative modeling and mutation prediction\",\"authors\":\"Jennifer Erin Dawson, Iris Nira Smith, Ann Marie Tushar, Charis Eng\",\"doi\":\"10.1016/j.str.2025.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<em>PTEN</em> (Phosphatase and TENsin homolog deleted on chromosome ten) is a major tumor suppressor gene that is frequently mutated or lost under cancerous conditions. PTEN is a dual-specificity phosphatase that negatively regulates the PI3K/AKT/mTOR signaling pathway at the plasma membrane (PM). Its functional regulation and cellular localization are known to be conformationally driven. Access to the PM is phosphoregulated by open and closed PTEN forms. However, clarifying the underlying structural mechanisms is still an open avenue of research. Here, we apply an integrative structural modeling approach, combining coarse-grained and all-atom molecular dynamics with experimental crosslinking mass spectrometry. Conformational exchange between an “eased” form and a “strained” form brings the protein’s phosphatase and C2 domains closer together, blocking the catalytic site, and affecting the loops involved in PM binding. Our full-length PTEN models, AlphaMissense, and RaSP were used to better predict the consequences of PTEN mutations.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.06.002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.06.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elucidating PTEN conformational dynamics and phosphatase regulation via integrative modeling and mutation prediction
PTEN (Phosphatase and TENsin homolog deleted on chromosome ten) is a major tumor suppressor gene that is frequently mutated or lost under cancerous conditions. PTEN is a dual-specificity phosphatase that negatively regulates the PI3K/AKT/mTOR signaling pathway at the plasma membrane (PM). Its functional regulation and cellular localization are known to be conformationally driven. Access to the PM is phosphoregulated by open and closed PTEN forms. However, clarifying the underlying structural mechanisms is still an open avenue of research. Here, we apply an integrative structural modeling approach, combining coarse-grained and all-atom molecular dynamics with experimental crosslinking mass spectrometry. Conformational exchange between an “eased” form and a “strained” form brings the protein’s phosphatase and C2 domains closer together, blocking the catalytic site, and affecting the loops involved in PM binding. Our full-length PTEN models, AlphaMissense, and RaSP were used to better predict the consequences of PTEN mutations.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.