双原子掺杂稳定高活性钌位对酸性水氧化的影响

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Jialin Tang, Qisheng Zeng, Qiu Jiang, Haoyuan Wang, Sunpei Hu, Yuan Ji, Hongliang Zeng, Chunxiao Liu, Hong-Jie Peng, Xu Li, Tingting Zheng, Chih-Wen Pao, Xinyan Liu, Chuan Xia
{"title":"双原子掺杂稳定高活性钌位对酸性水氧化的影响","authors":"Jialin Tang, Qisheng Zeng, Qiu Jiang, Haoyuan Wang, Sunpei Hu, Yuan Ji, Hongliang Zeng, Chunxiao Liu, Hong-Jie Peng, Xu Li, Tingting Zheng, Chih-Wen Pao, Xinyan Liu, Chuan Xia","doi":"10.1016/j.checat.2025.101441","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane (PEM) water splitting is a cutting-edge technology that can produce clean and renewable hydrogen fuel. However, sluggish oxygen evolution reaction (OER) kinetics remain a challenge for the trade-off between catalytic activity and stability in acidic media. Currently, ruthenium dioxide (RuO<sub>2</sub>) materials show great potential for the OER, which still suffers from a major drawback of low durability due to the severe dissolution of metal atoms in acidic electrolytes. Herein, we report a RuO<sub>2</sub> nanoparticle material modified with atomic Co and Pd to enhance OER stability while boosting catalytic activity in acidic environments. We demonstrate that Co atoms facilitate OOH∗ deprotonation, thereby lowering the OER energy barrier, while Pd atoms stabilize the Ru sites by effectively suppressing their over-oxidation and dissolution during the acidic OER.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"70 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of highly active Ru sites toward acidic water oxidation by dual-atom doping\",\"authors\":\"Jialin Tang, Qisheng Zeng, Qiu Jiang, Haoyuan Wang, Sunpei Hu, Yuan Ji, Hongliang Zeng, Chunxiao Liu, Hong-Jie Peng, Xu Li, Tingting Zheng, Chih-Wen Pao, Xinyan Liu, Chuan Xia\",\"doi\":\"10.1016/j.checat.2025.101441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane (PEM) water splitting is a cutting-edge technology that can produce clean and renewable hydrogen fuel. However, sluggish oxygen evolution reaction (OER) kinetics remain a challenge for the trade-off between catalytic activity and stability in acidic media. Currently, ruthenium dioxide (RuO<sub>2</sub>) materials show great potential for the OER, which still suffers from a major drawback of low durability due to the severe dissolution of metal atoms in acidic electrolytes. Herein, we report a RuO<sub>2</sub> nanoparticle material modified with atomic Co and Pd to enhance OER stability while boosting catalytic activity in acidic environments. We demonstrate that Co atoms facilitate OOH∗ deprotonation, thereby lowering the OER energy barrier, while Pd atoms stabilize the Ru sites by effectively suppressing their over-oxidation and dissolution during the acidic OER.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2025.101441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜(PEM)水分解技术是生产清洁可再生氢燃料的前沿技术。然而,缓慢的析氧反应(OER)动力学仍然是在酸性介质中催化活性和稳定性之间权衡的一个挑战。目前,二氧化钌(RuO2)材料在OER中显示出巨大的潜力,但由于金属原子在酸性电解质中的严重溶解,它仍然存在耐久性低的主要缺点。在此,我们报道了一种用Co和Pd原子修饰的RuO2纳米颗粒材料,以提高OER稳定性,同时提高酸性环境中的催化活性。我们证明Co原子促进OOH *去质子化,从而降低OER能垒,而Pd原子通过在酸性OER中有效抑制Ru位点的过度氧化和溶解来稳定Ru位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilization of highly active Ru sites toward acidic water oxidation by dual-atom doping

Stabilization of highly active Ru sites toward acidic water oxidation by dual-atom doping
Proton exchange membrane (PEM) water splitting is a cutting-edge technology that can produce clean and renewable hydrogen fuel. However, sluggish oxygen evolution reaction (OER) kinetics remain a challenge for the trade-off between catalytic activity and stability in acidic media. Currently, ruthenium dioxide (RuO2) materials show great potential for the OER, which still suffers from a major drawback of low durability due to the severe dissolution of metal atoms in acidic electrolytes. Herein, we report a RuO2 nanoparticle material modified with atomic Co and Pd to enhance OER stability while boosting catalytic activity in acidic environments. We demonstrate that Co atoms facilitate OOH∗ deprotonation, thereby lowering the OER energy barrier, while Pd atoms stabilize the Ru sites by effectively suppressing their over-oxidation and dissolution during the acidic OER.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信