聚合物复合材料的可燃性,热,机械和电气性能预测信息学

IF 3.9 2区 化学 Q2 POLYMER SCIENCE
Huan Tran, Chiho Kim, Rishi Gurnani, Oliver Hvidsten, Justin DeSimpliciis, Rampi Ramprasad, Karim Gadelrab, Charles Tuffile, Nicola Molinari, Daniil Kitchaev and Mordechai Kornbluth
{"title":"聚合物复合材料的可燃性,热,机械和电气性能预测信息学","authors":"Huan Tran, Chiho Kim, Rishi Gurnani, Oliver Hvidsten, Justin DeSimpliciis, Rampi Ramprasad, Karim Gadelrab, Charles Tuffile, Nicola Molinari, Daniil Kitchaev and Mordechai Kornbluth","doi":"10.1039/D4PY01417K","DOIUrl":null,"url":null,"abstract":"<p >Polymer composite performance depends significantly on the polymer matrix, additives, processing conditions, and measurement setups. Traditional physics-based optimization methods for these parameters can be slow, labor-intensive, and costly, as they require physical manufacturing and testing. Here, we introduce a first step in extending Polymer Informatics, an AI-based approach proven effective for neat polymer design, into the realm of polymer composites. We curate a comprehensive database of commercially available polymer composites, develop a scheme for machine-readable data representation, and train machine-learning models for 15 flame-resistant, mechanical, thermal, and electrical properties, validating them on entirely unseen data. Future advancements are planned to drive the AI-assisted design of functional and sustainable polymer composites.</p>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":" 30","pages":" 3459-3467"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer composites informatics for flammability, thermal, mechanical and electrical property predictions†\",\"authors\":\"Huan Tran, Chiho Kim, Rishi Gurnani, Oliver Hvidsten, Justin DeSimpliciis, Rampi Ramprasad, Karim Gadelrab, Charles Tuffile, Nicola Molinari, Daniil Kitchaev and Mordechai Kornbluth\",\"doi\":\"10.1039/D4PY01417K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer composite performance depends significantly on the polymer matrix, additives, processing conditions, and measurement setups. Traditional physics-based optimization methods for these parameters can be slow, labor-intensive, and costly, as they require physical manufacturing and testing. Here, we introduce a first step in extending Polymer Informatics, an AI-based approach proven effective for neat polymer design, into the realm of polymer composites. We curate a comprehensive database of commercially available polymer composites, develop a scheme for machine-readable data representation, and train machine-learning models for 15 flame-resistant, mechanical, thermal, and electrical properties, validating them on entirely unseen data. Future advancements are planned to drive the AI-assisted design of functional and sustainable polymer composites.</p>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\" 30\",\"pages\":\" 3459-3467\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/py/d4py01417k\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/py/d4py01417k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚合物复合材料的性能在很大程度上取决于聚合物基体、添加剂、加工条件和测量装置。对于这些参数,传统的基于物理的优化方法可能是缓慢的、劳动密集型的、昂贵的,因为它们需要物理制造和测试。在这里,我们介绍了扩展聚合物信息学的第一步,这是一种基于人工智能的方法,被证明对整齐的聚合物设计有效,进入聚合物复合材料领域。我们策划了一个商用聚合物复合材料的综合数据库,开发了一种机器可读数据表示方案,并训练了15种阻燃、机械、热和电气性能的机器学习模型,并在完全看不见的数据上验证它们。未来的发展计划将推动功能性和可持续聚合物复合材料的人工智能辅助设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polymer composites informatics for flammability, thermal, mechanical and electrical property predictions†

Polymer composites informatics for flammability, thermal, mechanical and electrical property predictions†

Polymer composite performance depends significantly on the polymer matrix, additives, processing conditions, and measurement setups. Traditional physics-based optimization methods for these parameters can be slow, labor-intensive, and costly, as they require physical manufacturing and testing. Here, we introduce a first step in extending Polymer Informatics, an AI-based approach proven effective for neat polymer design, into the realm of polymer composites. We curate a comprehensive database of commercially available polymer composites, develop a scheme for machine-readable data representation, and train machine-learning models for 15 flame-resistant, mechanical, thermal, and electrical properties, validating them on entirely unseen data. Future advancements are planned to drive the AI-assisted design of functional and sustainable polymer composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信