通过非等摩尔替代制备稳定全固态锂电池的Li和空位Co富集卤化物电解质

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mingyi Tang, Jianqi Sun, Caohua He, Chengyi Hou, Qinghong Zhang, Yaogang Li, Zongyi Qin, Kerui Li, Hongzhi Wang
{"title":"通过非等摩尔替代制备稳定全固态锂电池的Li和空位Co富集卤化物电解质","authors":"Mingyi Tang, Jianqi Sun, Caohua He, Chengyi Hou, Qinghong Zhang, Yaogang Li, Zongyi Qin, Kerui Li, Hongzhi Wang","doi":"10.1002/aenm.202501255","DOIUrl":null,"url":null,"abstract":"Halide solid electrolytes (SEs) have emerged as promising candidates for all‐solid‐state batteries (ASSBs) owing to their considerable ionic conductivity, mechanical deformability, and compatibility with high‐voltage cathodes. However, the conventional equimolar substitution strategy for developing halide SEs has limitations, as it fails to simultaneously ensure the presence of abundant vacancies and mobile Li‐ions, which are two critical factors governing ionic conductivity. Herein, a non‐equimolar substitution strategy is adopted to design a Li and vacancy co‐enriched Li<jats:sub>2</jats:sub>Zr<jats:sub>0.75</jats:sub>Ta<jats:sub>0.2</jats:sub>Cl<jats:sub>6</jats:sub> with high ionic conductivity (1.74 mS cm<jats:sup>−1</jats:sup>) and compatibility with high‐voltage Ni‐rich cathode. Specifically, more Zr<jats:sup>4+</jats:sup> is substituted with less Ta<jats:sup>5+</jats:sup> to generate Zr‐vacancies without depleting Li‐ion content while maintaining charge neutrality. Under the Li‐rich state, abundant Zr‐vacancies provide additional Li‐ion migration pathways within the non‐Li‐centered octahedral framework and promote uniform and efficient Li‐ion transport. ASSBs assembled with single‐crystalline LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (scNCM811) cathode demonstrate exceptional cycling stability with high‐capacity retention (80.0% over 7800 cycles) and maintain stable cycling over 12 000 cycles at a high rate of 5 C. Notably, even under high loading conditions (20.62 mg cm<jats:sup>−2</jats:sup> scNCM811), the ASSBs maintained a capacity retention of 80.8% over 800 cycles and 70.1% over 2300 cycles at a high rate of 1 C.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"28 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li and Vacancy Co‐Enriched Halide Electrolytes via Non‐Equimolar Substitution for Stable All‐Solid‐State Lithium Batteries\",\"authors\":\"Mingyi Tang, Jianqi Sun, Caohua He, Chengyi Hou, Qinghong Zhang, Yaogang Li, Zongyi Qin, Kerui Li, Hongzhi Wang\",\"doi\":\"10.1002/aenm.202501255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Halide solid electrolytes (SEs) have emerged as promising candidates for all‐solid‐state batteries (ASSBs) owing to their considerable ionic conductivity, mechanical deformability, and compatibility with high‐voltage cathodes. However, the conventional equimolar substitution strategy for developing halide SEs has limitations, as it fails to simultaneously ensure the presence of abundant vacancies and mobile Li‐ions, which are two critical factors governing ionic conductivity. Herein, a non‐equimolar substitution strategy is adopted to design a Li and vacancy co‐enriched Li<jats:sub>2</jats:sub>Zr<jats:sub>0.75</jats:sub>Ta<jats:sub>0.2</jats:sub>Cl<jats:sub>6</jats:sub> with high ionic conductivity (1.74 mS cm<jats:sup>−1</jats:sup>) and compatibility with high‐voltage Ni‐rich cathode. Specifically, more Zr<jats:sup>4+</jats:sup> is substituted with less Ta<jats:sup>5+</jats:sup> to generate Zr‐vacancies without depleting Li‐ion content while maintaining charge neutrality. Under the Li‐rich state, abundant Zr‐vacancies provide additional Li‐ion migration pathways within the non‐Li‐centered octahedral framework and promote uniform and efficient Li‐ion transport. ASSBs assembled with single‐crystalline LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (scNCM811) cathode demonstrate exceptional cycling stability with high‐capacity retention (80.0% over 7800 cycles) and maintain stable cycling over 12 000 cycles at a high rate of 5 C. Notably, even under high loading conditions (20.62 mg cm<jats:sup>−2</jats:sup> scNCM811), the ASSBs maintained a capacity retention of 80.8% over 800 cycles and 70.1% over 2300 cycles at a high rate of 1 C.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202501255\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501255","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

卤化物固体电解质(SEs)已成为全固态电池(assb)的有前途的候选者,因为它们具有相当大的离子电导率,机械变形性和与高压阴极的兼容性。然而,传统的等摩尔取代策略有局限性,因为它不能同时保证大量空位和移动Li离子的存在,这是控制离子电导率的两个关键因素。本文采用非等摩尔取代策略,设计了具有高离子电导率(1.74 mS cm−1)和与高压富Ni阴极相容的锂和空位共富集Li2Zr0.75Ta0.2Cl6。具体来说,更多的Zr4+被更少的Ta5+取代以产生Zr -空位,而不会耗尽Li -离子含量,同时保持电荷中性。在Li -富态下,丰富的Zr -空位在非Li -中心八面体框架内提供了额外的Li -离子迁移途径,促进了Li -离子的均匀和高效迁移。用单晶LiNi0.8Co0.1Mn0.1O2 (scNCM811)阴极组装的assb表现出优异的循环稳定性,具有高容量保持率(7800次以上80.0%),并在5℃的高速率下保持稳定循环超过12000次。值得注意的是,即使在高负载条件下(20.62 mg cm - 2 scNCM811), assb在800次以上保持80.8%的容量保持率,在2300次以上保持70.1%的容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Li and Vacancy Co‐Enriched Halide Electrolytes via Non‐Equimolar Substitution for Stable All‐Solid‐State Lithium Batteries
Halide solid electrolytes (SEs) have emerged as promising candidates for all‐solid‐state batteries (ASSBs) owing to their considerable ionic conductivity, mechanical deformability, and compatibility with high‐voltage cathodes. However, the conventional equimolar substitution strategy for developing halide SEs has limitations, as it fails to simultaneously ensure the presence of abundant vacancies and mobile Li‐ions, which are two critical factors governing ionic conductivity. Herein, a non‐equimolar substitution strategy is adopted to design a Li and vacancy co‐enriched Li2Zr0.75Ta0.2Cl6 with high ionic conductivity (1.74 mS cm−1) and compatibility with high‐voltage Ni‐rich cathode. Specifically, more Zr4+ is substituted with less Ta5+ to generate Zr‐vacancies without depleting Li‐ion content while maintaining charge neutrality. Under the Li‐rich state, abundant Zr‐vacancies provide additional Li‐ion migration pathways within the non‐Li‐centered octahedral framework and promote uniform and efficient Li‐ion transport. ASSBs assembled with single‐crystalline LiNi0.8Co0.1Mn0.1O2 (scNCM811) cathode demonstrate exceptional cycling stability with high‐capacity retention (80.0% over 7800 cycles) and maintain stable cycling over 12 000 cycles at a high rate of 5 C. Notably, even under high loading conditions (20.62 mg cm−2 scNCM811), the ASSBs maintained a capacity retention of 80.8% over 800 cycles and 70.1% over 2300 cycles at a high rate of 1 C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信