Sepideh Izaddoust, Isabel Poves-Ruiz, Enrique Azuaje-Hualde, Daniel Patko, Larisa Florea, Colm Delaney, Lourdes Basabe-Desmonts, Fernando Benito-Lopez
{"title":"微流控器件中智能功能材料作动器的现状与未来","authors":"Sepideh Izaddoust, Isabel Poves-Ruiz, Enrique Azuaje-Hualde, Daniel Patko, Larisa Florea, Colm Delaney, Lourdes Basabe-Desmonts, Fernando Benito-Lopez","doi":"10.1039/d5lc00259a","DOIUrl":null,"url":null,"abstract":"The role of actuators in microfluidic systems is fundamental for accurate measurements and analyses, as they enable precise control over fluid flow by converting various forms of energy—including electrical, thermal, piezoelectric, and electromagnetic—into mechanical motion. The integration of actuators within microfluidic devices facilitates system miniaturization, allowing complex fluidic operations at the microscale. Actuators are essential components in micropumps, micromixers, microvalves, and other fluidic control elements, ensuring accurate handling of very small quantities of liquids. However, the selection of the material type for the actuator is highly dependent on the specific application, as well as on the material composition and structural configuration of the microfluidic device in which it will be integrated. Actuators can feature either moving or static components, and the use of hybrid materials allows for the development of innovative actuation mechanisms. Given the vast range of possible actuator-material combinations, selecting an appropriate actuation strategy is critical for optimal device performance. This review presents recent advancements in microfluidic actuation, with a particular emphasis on material innovations. It explores emerging actuator materials integrated within microfluidic channels, their fabrication and integration methods, activation mechanisms, and functional applications. Additionally, the review provides a comprehensive outlook on promising materials for future microfluidic actuator development.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"70 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Present and Future of Smart Functional Materials as Actuators in Microfluidic Devices\",\"authors\":\"Sepideh Izaddoust, Isabel Poves-Ruiz, Enrique Azuaje-Hualde, Daniel Patko, Larisa Florea, Colm Delaney, Lourdes Basabe-Desmonts, Fernando Benito-Lopez\",\"doi\":\"10.1039/d5lc00259a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of actuators in microfluidic systems is fundamental for accurate measurements and analyses, as they enable precise control over fluid flow by converting various forms of energy—including electrical, thermal, piezoelectric, and electromagnetic—into mechanical motion. The integration of actuators within microfluidic devices facilitates system miniaturization, allowing complex fluidic operations at the microscale. Actuators are essential components in micropumps, micromixers, microvalves, and other fluidic control elements, ensuring accurate handling of very small quantities of liquids. However, the selection of the material type for the actuator is highly dependent on the specific application, as well as on the material composition and structural configuration of the microfluidic device in which it will be integrated. Actuators can feature either moving or static components, and the use of hybrid materials allows for the development of innovative actuation mechanisms. Given the vast range of possible actuator-material combinations, selecting an appropriate actuation strategy is critical for optimal device performance. This review presents recent advancements in microfluidic actuation, with a particular emphasis on material innovations. It explores emerging actuator materials integrated within microfluidic channels, their fabrication and integration methods, activation mechanisms, and functional applications. Additionally, the review provides a comprehensive outlook on promising materials for future microfluidic actuator development.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5lc00259a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00259a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Present and Future of Smart Functional Materials as Actuators in Microfluidic Devices
The role of actuators in microfluidic systems is fundamental for accurate measurements and analyses, as they enable precise control over fluid flow by converting various forms of energy—including electrical, thermal, piezoelectric, and electromagnetic—into mechanical motion. The integration of actuators within microfluidic devices facilitates system miniaturization, allowing complex fluidic operations at the microscale. Actuators are essential components in micropumps, micromixers, microvalves, and other fluidic control elements, ensuring accurate handling of very small quantities of liquids. However, the selection of the material type for the actuator is highly dependent on the specific application, as well as on the material composition and structural configuration of the microfluidic device in which it will be integrated. Actuators can feature either moving or static components, and the use of hybrid materials allows for the development of innovative actuation mechanisms. Given the vast range of possible actuator-material combinations, selecting an appropriate actuation strategy is critical for optimal device performance. This review presents recent advancements in microfluidic actuation, with a particular emphasis on material innovations. It explores emerging actuator materials integrated within microfluidic channels, their fabrication and integration methods, activation mechanisms, and functional applications. Additionally, the review provides a comprehensive outlook on promising materials for future microfluidic actuator development.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.