{"title":"染色质的空间组织限制了ltr中备用启动子的激活","authors":"","doi":"10.1038/s41588-025-02238-7","DOIUrl":null,"url":null,"abstract":"Transposable elements (TEs) are important in the evolution of genomic functions but the mechanisms of their precise role in cancer pathogenesis is unclear. Alternative promoters at the TE subclass long terminal repeats (LTRs) are activated when topologically associating domain (TAD) hierarchy maintained by NIPBL is lost, potentially leading to aberrant transcription of oncogenes.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 7","pages":"1576-1577"},"PeriodicalIF":29.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial organization of chromatin restricts activation of poised alternative promoters in LTRs\",\"authors\":\"\",\"doi\":\"10.1038/s41588-025-02238-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transposable elements (TEs) are important in the evolution of genomic functions but the mechanisms of their precise role in cancer pathogenesis is unclear. Alternative promoters at the TE subclass long terminal repeats (LTRs) are activated when topologically associating domain (TAD) hierarchy maintained by NIPBL is lost, potentially leading to aberrant transcription of oncogenes.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"57 7\",\"pages\":\"1576-1577\"},\"PeriodicalIF\":29.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-025-02238-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02238-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Spatial organization of chromatin restricts activation of poised alternative promoters in LTRs
Transposable elements (TEs) are important in the evolution of genomic functions but the mechanisms of their precise role in cancer pathogenesis is unclear. Alternative promoters at the TE subclass long terminal repeats (LTRs) are activated when topologically associating domain (TAD) hierarchy maintained by NIPBL is lost, potentially leading to aberrant transcription of oncogenes.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution