{"title":"多萝西霍奇金讲座2024:胰岛素对线粒体生物发生和功能的调节-线粒体功能失调对糖尿病及其并发症的影响。","authors":"K. Sreekumaran Nair","doi":"10.1111/dme.70086","DOIUrl":null,"url":null,"abstract":"<p>Skeletal muscle atrophy was a characteristic of type 1 diabetes (T1DM) prior to insulin discovery and replacement. Indirect calorimetry during the post-absorptive state demonstrated that increased fuel oxidation during transient insulin deprivation in T1DM caused depletion of energy stores. Further, insulin has a critical role in preserving muscle mitochondrial content and function by enhancing mitochondrial biogenesis and proteostasis. Insulin deficiency not only inhibits mitochondrial biogenesis but also accelerates the degradation of mitochondrial proteins, causing a decline in mitochondrial content and efficiency. Inefficient mitochondrial respiration, reflected by the uncoupling of oxidative phosphorylation and consequent decline in ATP production, adversely affects many cellular functions and causes high oxidative stress. Oxidative stress adversely affects cardiovascular functions and damages many skeletal muscle proteins, accelerating their degradation and explaining muscle atrophy. Increased degradation of muscle proteins increases amino acid efflux that stimulates the liver to synthesize many non-insulin-dependent proteins, potentially contributing to macrovascular complications. This phenomenon explains a paradoxical increase in whole-body protein synthesis during insulin deficiency. Further, the mitochondrial biology of brain regions rich in insulin receptors concurrent with accelerated transport of ketones and lactate across the blood–brain barrier during insulin deficiency seems to protect the brain from oxidative stress. In contrast, insulin resistance associated with less ketone and lactate production renders the brain susceptible to protein oxidative damage. Oxidative damage and reduced ATP production potentially explain the higher prevalence of dementia in insulin-resistant people. Enhancement of insulin sensitivity by aerobic exercise and metformin in pre-clinical studies prevents mitochondrial dysfunction and oxidative damage to the brain.</p>","PeriodicalId":11251,"journal":{"name":"Diabetic Medicine","volume":"42 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dorothy Hodgkin lecture 2024: Insulin regulation of mitochondrial biogenesis and function—Impact of dysregulation of mitochondrial function in diabetes and its complications\",\"authors\":\"K. Sreekumaran Nair\",\"doi\":\"10.1111/dme.70086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skeletal muscle atrophy was a characteristic of type 1 diabetes (T1DM) prior to insulin discovery and replacement. Indirect calorimetry during the post-absorptive state demonstrated that increased fuel oxidation during transient insulin deprivation in T1DM caused depletion of energy stores. Further, insulin has a critical role in preserving muscle mitochondrial content and function by enhancing mitochondrial biogenesis and proteostasis. Insulin deficiency not only inhibits mitochondrial biogenesis but also accelerates the degradation of mitochondrial proteins, causing a decline in mitochondrial content and efficiency. Inefficient mitochondrial respiration, reflected by the uncoupling of oxidative phosphorylation and consequent decline in ATP production, adversely affects many cellular functions and causes high oxidative stress. Oxidative stress adversely affects cardiovascular functions and damages many skeletal muscle proteins, accelerating their degradation and explaining muscle atrophy. Increased degradation of muscle proteins increases amino acid efflux that stimulates the liver to synthesize many non-insulin-dependent proteins, potentially contributing to macrovascular complications. This phenomenon explains a paradoxical increase in whole-body protein synthesis during insulin deficiency. Further, the mitochondrial biology of brain regions rich in insulin receptors concurrent with accelerated transport of ketones and lactate across the blood–brain barrier during insulin deficiency seems to protect the brain from oxidative stress. In contrast, insulin resistance associated with less ketone and lactate production renders the brain susceptible to protein oxidative damage. Oxidative damage and reduced ATP production potentially explain the higher prevalence of dementia in insulin-resistant people. Enhancement of insulin sensitivity by aerobic exercise and metformin in pre-clinical studies prevents mitochondrial dysfunction and oxidative damage to the brain.</p>\",\"PeriodicalId\":11251,\"journal\":{\"name\":\"Diabetic Medicine\",\"volume\":\"42 9\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dme.70086\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetic Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dme.70086","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Dorothy Hodgkin lecture 2024: Insulin regulation of mitochondrial biogenesis and function—Impact of dysregulation of mitochondrial function in diabetes and its complications
Skeletal muscle atrophy was a characteristic of type 1 diabetes (T1DM) prior to insulin discovery and replacement. Indirect calorimetry during the post-absorptive state demonstrated that increased fuel oxidation during transient insulin deprivation in T1DM caused depletion of energy stores. Further, insulin has a critical role in preserving muscle mitochondrial content and function by enhancing mitochondrial biogenesis and proteostasis. Insulin deficiency not only inhibits mitochondrial biogenesis but also accelerates the degradation of mitochondrial proteins, causing a decline in mitochondrial content and efficiency. Inefficient mitochondrial respiration, reflected by the uncoupling of oxidative phosphorylation and consequent decline in ATP production, adversely affects many cellular functions and causes high oxidative stress. Oxidative stress adversely affects cardiovascular functions and damages many skeletal muscle proteins, accelerating their degradation and explaining muscle atrophy. Increased degradation of muscle proteins increases amino acid efflux that stimulates the liver to synthesize many non-insulin-dependent proteins, potentially contributing to macrovascular complications. This phenomenon explains a paradoxical increase in whole-body protein synthesis during insulin deficiency. Further, the mitochondrial biology of brain regions rich in insulin receptors concurrent with accelerated transport of ketones and lactate across the blood–brain barrier during insulin deficiency seems to protect the brain from oxidative stress. In contrast, insulin resistance associated with less ketone and lactate production renders the brain susceptible to protein oxidative damage. Oxidative damage and reduced ATP production potentially explain the higher prevalence of dementia in insulin-resistant people. Enhancement of insulin sensitivity by aerobic exercise and metformin in pre-clinical studies prevents mitochondrial dysfunction and oxidative damage to the brain.
期刊介绍:
Diabetic Medicine, the official journal of Diabetes UK, is published monthly simultaneously, in print and online editions.
The journal publishes a range of key information on all clinical aspects of diabetes mellitus, ranging from human genetic studies through clinical physiology and trials to diabetes epidemiology. We do not publish original animal or cell culture studies unless they are part of a study of clinical diabetes involving humans. Categories of publication include research articles, reviews, editorials, commentaries, and correspondence. All material is peer-reviewed.
We aim to disseminate knowledge about diabetes research with the goal of improving the management of people with diabetes. The journal therefore seeks to provide a forum for the exchange of ideas between clinicians and researchers worldwide. Topics covered are of importance to all healthcare professionals working with people with diabetes, whether in primary care or specialist services.
Surplus generated from the sale of Diabetic Medicine is used by Diabetes UK to know diabetes better and fight diabetes more effectively on behalf of all people affected by and at risk of diabetes as well as their families and carers.”