Muhammad S Tolba, Muhammad Majid Gulzar, Ali Arishi, Mohamed Soliman, Ali Faisal Murtaza
{"title":"基于多区域智能电网的新型mpc级联控制:应对可再生能源和电动汽车集成挑战。","authors":"Muhammad S Tolba, Muhammad Majid Gulzar, Ali Arishi, Mohamed Soliman, Ali Faisal Murtaza","doi":"10.1016/j.isatra.2025.06.024","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an advanced cascaded control scheme for load frequency regulation in multi-area power systems incorporating renewable energy sources (RES) and electric vehicles (EVs). The proposed design (Model predictive control cascaded with one plus proportional-integral control cascaded with tilt control in parallel with one plus fractional-order integral derivative controller (MPC-((1+PI)-(T+(1+I<sup>λ</sup>D<sup>μ</sup>)))) combines predictive, tilt, and fractional-order dynamics to improve adaptability and robustness under uncertainties. Controller parameters are tuned using the Lyrebird Optimization Algorithm (LOA), ensuring fast convergence and effective global search. Simulation results under varying operational conditions, including nonlinearity effects such as Generation Rate Constraints (GRC), Governor Dead Band (GDB), and Communication Time Delays (CTD), confirm the controller's superiority. It achieves a 96.4 % ITAE reduction, 98.6 % undershoot mitigation, and a settling time of just 5.8 s outperforming existing benchmark strategies (GOA: PDf+(0.75+PI), CBOA: PI-PD, JSA: PI, and ARA: 1+PID).</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel MPC-based cascaded control for multi-area smart grids: Tackling renewable energy and EV integration challenges.\",\"authors\":\"Muhammad S Tolba, Muhammad Majid Gulzar, Ali Arishi, Mohamed Soliman, Ali Faisal Murtaza\",\"doi\":\"10.1016/j.isatra.2025.06.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents an advanced cascaded control scheme for load frequency regulation in multi-area power systems incorporating renewable energy sources (RES) and electric vehicles (EVs). The proposed design (Model predictive control cascaded with one plus proportional-integral control cascaded with tilt control in parallel with one plus fractional-order integral derivative controller (MPC-((1+PI)-(T+(1+I<sup>λ</sup>D<sup>μ</sup>)))) combines predictive, tilt, and fractional-order dynamics to improve adaptability and robustness under uncertainties. Controller parameters are tuned using the Lyrebird Optimization Algorithm (LOA), ensuring fast convergence and effective global search. Simulation results under varying operational conditions, including nonlinearity effects such as Generation Rate Constraints (GRC), Governor Dead Band (GDB), and Communication Time Delays (CTD), confirm the controller's superiority. It achieves a 96.4 % ITAE reduction, 98.6 % undershoot mitigation, and a settling time of just 5.8 s outperforming existing benchmark strategies (GOA: PDf+(0.75+PI), CBOA: PI-PD, JSA: PI, and ARA: 1+PID).</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.06.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.06.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel MPC-based cascaded control for multi-area smart grids: Tackling renewable energy and EV integration challenges.
This paper presents an advanced cascaded control scheme for load frequency regulation in multi-area power systems incorporating renewable energy sources (RES) and electric vehicles (EVs). The proposed design (Model predictive control cascaded with one plus proportional-integral control cascaded with tilt control in parallel with one plus fractional-order integral derivative controller (MPC-((1+PI)-(T+(1+IλDμ)))) combines predictive, tilt, and fractional-order dynamics to improve adaptability and robustness under uncertainties. Controller parameters are tuned using the Lyrebird Optimization Algorithm (LOA), ensuring fast convergence and effective global search. Simulation results under varying operational conditions, including nonlinearity effects such as Generation Rate Constraints (GRC), Governor Dead Band (GDB), and Communication Time Delays (CTD), confirm the controller's superiority. It achieves a 96.4 % ITAE reduction, 98.6 % undershoot mitigation, and a settling time of just 5.8 s outperforming existing benchmark strategies (GOA: PDf+(0.75+PI), CBOA: PI-PD, JSA: PI, and ARA: 1+PID).