马提尼酒中的微管:向机械精确微管方向参数化非均质弹性网络。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-06-21 eCollection Date: 2025-07-01 DOI:10.1093/pnasnexus/pgaf202
Abhilash Sahoo, Sonya M Hanson
{"title":"马提尼酒中的微管:向机械精确微管方向参数化非均质弹性网络。","authors":"Abhilash Sahoo, Sonya M Hanson","doi":"10.1093/pnasnexus/pgaf202","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubules are essential cytoskeletal filaments involved in cell motility, division, and intracellular transport, exhibiting complex structural dynamics governed by diverse biophysical factors. Atomistic simulations of microtubule assemblies remain challenging due to their extensive spatiotemporal scales. To address this, we present a multiscale approach combining the primarily top-down Martini 3 coarse-grained (CG) model with an appropriately parameterized heterogeneous elastic network to capture microtubule mechanics and molecular detail efficiently. By iteratively tuning the elastic network, we matched the structural fluctuations of CG heterodimeric building blocks to atomistic reference data, reproducing experimentally consistent mechanical properties. This framework helped us identify stabilizing long-lived interactions between charged C-terminal tails and the folded domain of neighboring tubulin subunits, offering insight into sequence-specific contributions to lattice stability. Our efforts culminated in the construction of a <math><mo>∼</mo></math> 200 nm microtubule composed of <math><mo>∼</mo> <mn>6</mn></math> million interaction centers, enabling exploration of large-scale microtubule-associated processes with amino acid-level resolution. This work bridges the gap between molecular specificity and computational scalability, offering a platform for simulating biophysical processes across cellular length and time scales.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 7","pages":"pgaf202"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microtubules in Martini: Parameterizing a heterogeneous elastic-network towards a mechanically accurate microtubule.\",\"authors\":\"Abhilash Sahoo, Sonya M Hanson\",\"doi\":\"10.1093/pnasnexus/pgaf202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubules are essential cytoskeletal filaments involved in cell motility, division, and intracellular transport, exhibiting complex structural dynamics governed by diverse biophysical factors. Atomistic simulations of microtubule assemblies remain challenging due to their extensive spatiotemporal scales. To address this, we present a multiscale approach combining the primarily top-down Martini 3 coarse-grained (CG) model with an appropriately parameterized heterogeneous elastic network to capture microtubule mechanics and molecular detail efficiently. By iteratively tuning the elastic network, we matched the structural fluctuations of CG heterodimeric building blocks to atomistic reference data, reproducing experimentally consistent mechanical properties. This framework helped us identify stabilizing long-lived interactions between charged C-terminal tails and the folded domain of neighboring tubulin subunits, offering insight into sequence-specific contributions to lattice stability. Our efforts culminated in the construction of a <math><mo>∼</mo></math> 200 nm microtubule composed of <math><mo>∼</mo> <mn>6</mn></math> million interaction centers, enabling exploration of large-scale microtubule-associated processes with amino acid-level resolution. This work bridges the gap between molecular specificity and computational scalability, offering a platform for simulating biophysical processes across cellular length and time scales.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 7\",\"pages\":\"pgaf202\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微管是参与细胞运动、分裂和细胞内运输的基本细胞骨架细丝,表现出受多种生物物理因素支配的复杂结构动力学。由于其广泛的时空尺度,微管组件的原子模拟仍然具有挑战性。为了解决这个问题,我们提出了一种多尺度方法,将主要自上而下的Martini 3粗粒度(CG)模型与适当参数化的非均质弹性网络相结合,以有效地捕获微管力学和分子细节。通过迭代调整弹性网络,我们将CG异二聚体构建块的结构波动与原子参考数据相匹配,再现了实验中一致的力学性能。这个框架帮助我们确定了带电c端尾部和邻近微管蛋白亚基折叠结构域之间稳定的长期相互作用,从而深入了解了序列特异性对晶格稳定性的贡献。我们的努力最终构建了由~ 600万个相互作用中心组成的~ 200 nm微管,从而能够以氨基酸水平的分辨率探索大规模微管相关过程。这项工作弥合了分子特异性和计算可扩展性之间的差距,为模拟跨越细胞长度和时间尺度的生物物理过程提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microtubules in Martini: Parameterizing a heterogeneous elastic-network towards a mechanically accurate microtubule.

Microtubules are essential cytoskeletal filaments involved in cell motility, division, and intracellular transport, exhibiting complex structural dynamics governed by diverse biophysical factors. Atomistic simulations of microtubule assemblies remain challenging due to their extensive spatiotemporal scales. To address this, we present a multiscale approach combining the primarily top-down Martini 3 coarse-grained (CG) model with an appropriately parameterized heterogeneous elastic network to capture microtubule mechanics and molecular detail efficiently. By iteratively tuning the elastic network, we matched the structural fluctuations of CG heterodimeric building blocks to atomistic reference data, reproducing experimentally consistent mechanical properties. This framework helped us identify stabilizing long-lived interactions between charged C-terminal tails and the folded domain of neighboring tubulin subunits, offering insight into sequence-specific contributions to lattice stability. Our efforts culminated in the construction of a 200 nm microtubule composed of 6 million interaction centers, enabling exploration of large-scale microtubule-associated processes with amino acid-level resolution. This work bridges the gap between molecular specificity and computational scalability, offering a platform for simulating biophysical processes across cellular length and time scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信