利用迁移学习克服危重心律失常检测中的数据稀缺问题。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Giuliana Monachino, Beatrice Zanchi, Michael Wand, Giulio Conte, Athina Tzovara, Francesca Dalia Faraci
{"title":"利用迁移学习克服危重心律失常检测中的数据稀缺问题。","authors":"Giuliana Monachino, Beatrice Zanchi, Michael Wand, Giulio Conte, Athina Tzovara, Francesca Dalia Faraci","doi":"10.1038/s43856-025-00982-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Life-threatening arrhythmias (LTAs) are a leading cause of death worldwide. Enhancing LTA detection in wearable monitoring systems is of great importance. One of the main challenges in building robust LTA detection algorithms is the limited availability of labeled LTA data.</p><p><strong>Methods: </strong>We introduce an effective deep-learning algorithm for detecting LTAs from single-lead ECGs in out-of-hospital cardiac arrest applications. We address the data-scarcity issue by applying a transfer learning approach. The deep-learning model is pre-trained on a massive dataset (72'952 recordings) for rhythm classification and then fine-tuned on the target dataset with LTA events (102 recordings).</p><p><strong>Results: </strong>Our model achieves a sensitivity of 92.68% and a specificity of 99.48%, with a granularity of 1.28 seconds, in detecting LTAs. Additionally, a confidence estimation procedure is introduced to enable emergency service pre-alerts in case of low-confidence detections.</p><p><strong>Conclusions: </strong>Our transfer learning based approach has the potential to significantly mitigate the impact of data scarcity, advancing LTA detection in wearable monitoring systems, and supporting rapid, life-saving interventions in out-of-hospital cardiac arrest emergencies.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"248"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overcoming data scarcity in life-threatening arrhythmia detection through transfer learning.\",\"authors\":\"Giuliana Monachino, Beatrice Zanchi, Michael Wand, Giulio Conte, Athina Tzovara, Francesca Dalia Faraci\",\"doi\":\"10.1038/s43856-025-00982-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Life-threatening arrhythmias (LTAs) are a leading cause of death worldwide. Enhancing LTA detection in wearable monitoring systems is of great importance. One of the main challenges in building robust LTA detection algorithms is the limited availability of labeled LTA data.</p><p><strong>Methods: </strong>We introduce an effective deep-learning algorithm for detecting LTAs from single-lead ECGs in out-of-hospital cardiac arrest applications. We address the data-scarcity issue by applying a transfer learning approach. The deep-learning model is pre-trained on a massive dataset (72'952 recordings) for rhythm classification and then fine-tuned on the target dataset with LTA events (102 recordings).</p><p><strong>Results: </strong>Our model achieves a sensitivity of 92.68% and a specificity of 99.48%, with a granularity of 1.28 seconds, in detecting LTAs. Additionally, a confidence estimation procedure is introduced to enable emergency service pre-alerts in case of low-confidence detections.</p><p><strong>Conclusions: </strong>Our transfer learning based approach has the potential to significantly mitigate the impact of data scarcity, advancing LTA detection in wearable monitoring systems, and supporting rapid, life-saving interventions in out-of-hospital cardiac arrest emergencies.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"248\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-00982-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00982-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:危及生命的心律失常(LTAs)是世界范围内死亡的主要原因。在可穿戴监控系统中加强LTA检测具有重要意义。构建鲁棒LTA检测算法的主要挑战之一是标记LTA数据的有限可用性。方法:我们介绍了一种有效的深度学习算法,用于检测院外心脏骤停应用中单导联心电图的lta。我们通过应用迁移学习方法来解决数据稀缺问题。深度学习模型在大量数据集(72'952个录音)上进行节奏分类预训练,然后使用LTA事件(102个录音)对目标数据集进行微调。结果:该模型检测LTAs的灵敏度为92.68%,特异度为99.48%,粒度为1.28秒。此外,还引入了置信度估计程序,以便在检测到低置信度的情况下能够进行紧急服务预警。结论:我们基于迁移学习的方法有可能显著减轻数据稀缺的影响,推进可穿戴监测系统中的LTA检测,并支持在院外心脏骤停紧急情况下的快速救生干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming data scarcity in life-threatening arrhythmia detection through transfer learning.

Background: Life-threatening arrhythmias (LTAs) are a leading cause of death worldwide. Enhancing LTA detection in wearable monitoring systems is of great importance. One of the main challenges in building robust LTA detection algorithms is the limited availability of labeled LTA data.

Methods: We introduce an effective deep-learning algorithm for detecting LTAs from single-lead ECGs in out-of-hospital cardiac arrest applications. We address the data-scarcity issue by applying a transfer learning approach. The deep-learning model is pre-trained on a massive dataset (72'952 recordings) for rhythm classification and then fine-tuned on the target dataset with LTA events (102 recordings).

Results: Our model achieves a sensitivity of 92.68% and a specificity of 99.48%, with a granularity of 1.28 seconds, in detecting LTAs. Additionally, a confidence estimation procedure is introduced to enable emergency service pre-alerts in case of low-confidence detections.

Conclusions: Our transfer learning based approach has the potential to significantly mitigate the impact of data scarcity, advancing LTA detection in wearable monitoring systems, and supporting rapid, life-saving interventions in out-of-hospital cardiac arrest emergencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信