数字生物标志物在情绪障碍诊断、治疗和监测中的应用:叙述性综述。

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-06-17 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1595243
Andrea P Garzón-Partida, Citlali B Padilla-Gómez, Diana Emilia Martínez-Fernández, Joaquín García-Estrada, Sonia Luquin, David Fernández-Quezada
{"title":"数字生物标志物在情绪障碍诊断、治疗和监测中的应用:叙述性综述。","authors":"Andrea P Garzón-Partida, Citlali B Padilla-Gómez, Diana Emilia Martínez-Fernández, Joaquín García-Estrada, Sonia Luquin, David Fernández-Quezada","doi":"10.3389/fdgth.2025.1595243","DOIUrl":null,"url":null,"abstract":"<p><p>Mood Disorders are a group of mental health conditions characterized by a disruption of the emotional state that affects the quality of life of the people living with them. Mental Disorders are difficult to diagnose and treat due to the complex processes involved and limitations of the healthcare system. Digital biomarkers have created accessible, long-term, non-invasive, and user-friendly alternatives for the diagnosis, treatment, and monitoring of these conditions. The use of everyday devices like smartphones and smartwatches and specialized tools like actigraphy, in conjunction with powerful statistical tools, artificial intelligence, and machine learning, represents a promising avenue for the implementation of personalized strategies to monitor and treat Mood Disorders, and potentially higher adherence to treatment. We conducted several studies that implement a variety of methodologies and tools to better understand Mood Disorders, using a patient-focused approach with the ultimate goal of identifying better strategies to improve their quality of life.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1595243"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209236/pdf/","citationCount":"0","resultStr":"{\"title\":\"The implementation of digital biomarkers in the diagnosis, treatment and monitoring of mood disorders: a narrative review.\",\"authors\":\"Andrea P Garzón-Partida, Citlali B Padilla-Gómez, Diana Emilia Martínez-Fernández, Joaquín García-Estrada, Sonia Luquin, David Fernández-Quezada\",\"doi\":\"10.3389/fdgth.2025.1595243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mood Disorders are a group of mental health conditions characterized by a disruption of the emotional state that affects the quality of life of the people living with them. Mental Disorders are difficult to diagnose and treat due to the complex processes involved and limitations of the healthcare system. Digital biomarkers have created accessible, long-term, non-invasive, and user-friendly alternatives for the diagnosis, treatment, and monitoring of these conditions. The use of everyday devices like smartphones and smartwatches and specialized tools like actigraphy, in conjunction with powerful statistical tools, artificial intelligence, and machine learning, represents a promising avenue for the implementation of personalized strategies to monitor and treat Mood Disorders, and potentially higher adherence to treatment. We conducted several studies that implement a variety of methodologies and tools to better understand Mood Disorders, using a patient-focused approach with the ultimate goal of identifying better strategies to improve their quality of life.</p>\",\"PeriodicalId\":73078,\"journal\":{\"name\":\"Frontiers in digital health\",\"volume\":\"7 \",\"pages\":\"1595243\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdgth.2025.1595243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1595243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

情绪障碍是一组精神健康状况,其特征是情绪状态的破坏,影响患者的生活质量。由于涉及的复杂过程和医疗保健系统的局限性,精神障碍难以诊断和治疗。数字生物标志物为这些疾病的诊断、治疗和监测创造了可获取、长期、非侵入性和用户友好的替代方案。智能手机和智能手表等日常设备以及活动记录仪等专业工具的使用,结合强大的统计工具、人工智能和机器学习,代表了实施个性化策略来监测和治疗情绪障碍的一个有希望的途径,并有可能提高治疗的依从性。我们进行了几项研究,采用各种方法和工具来更好地理解情绪障碍,使用以患者为中心的方法,最终目标是确定更好的策略来改善他们的生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The implementation of digital biomarkers in the diagnosis, treatment and monitoring of mood disorders: a narrative review.

Mood Disorders are a group of mental health conditions characterized by a disruption of the emotional state that affects the quality of life of the people living with them. Mental Disorders are difficult to diagnose and treat due to the complex processes involved and limitations of the healthcare system. Digital biomarkers have created accessible, long-term, non-invasive, and user-friendly alternatives for the diagnosis, treatment, and monitoring of these conditions. The use of everyday devices like smartphones and smartwatches and specialized tools like actigraphy, in conjunction with powerful statistical tools, artificial intelligence, and machine learning, represents a promising avenue for the implementation of personalized strategies to monitor and treat Mood Disorders, and potentially higher adherence to treatment. We conducted several studies that implement a variety of methodologies and tools to better understand Mood Disorders, using a patient-focused approach with the ultimate goal of identifying better strategies to improve their quality of life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信