使用镜像建模的个性化3D打印颅罩:设计和临床评估。

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zhongjie Shi, Zhengbo Yuan, Jie Chen, Hongwei Zhu, Hualing Huang, Zhanxiang Wang, Zirui Su
{"title":"使用镜像建模的个性化3D打印颅罩:设计和临床评估。","authors":"Zhongjie Shi, Zhengbo Yuan, Jie Chen, Hongwei Zhu, Hualing Huang, Zhanxiang Wang, Zirui Su","doi":"10.1186/s41205-025-00289-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients who undergo decompressive craniectomy (DC) are at increased risk of head trauma due to postoperative cranial defects, which not only raise concerns about physical vulnerability but also negatively impact psychological well-being. Conventional protective strategies remain insufficient. This study aimed to develop a personalized, low-cost, three-dimensional (3D) printed external head protection device using mirror-image modeling, and to evaluate its performance in providing physical protection and improving patient-reported outcomes during the post-discharge period.</p><p><strong>Method: </strong>A prospective study was conducted involving 58 patients treated with DC between August 2023 and February 2025 across two neurosurgical centers. Participants were randomly assigned to an observation group (n = 28), who wore a custom-designed 3D printed protective device based on postoperative CT scans, or to a control group (n = 30) without special protective measures. A custom questionnaire was used to assess satisfaction with appearance, willingness to engage in social activities, and fear of accidental impact at weeks 1, 4, and 8 post-discharge. Objective indicators such as fall events, adverse reactions, and device integrity were also recorded.</p><p><strong>Results: </strong>The 3D printed models demonstrated good anatomical fit and structural reliability. At weeks 4 and 8, the observation group showed significantly higher Visual Analog Scale (VAS) scores compared to the control group (P = 0.014 and P = 0.002, respectively), with continuous improvement over time (P < 0.05). The average daily usage time of the device was 4.4 ± 1.2 h. No cases of skin irritation or pressure injuries were reported. One patient in the observation group experienced a fall that caused a minor device crack but no head injury (fall rate: 3.6%). In the control group, two patients fell without head trauma (fall rate: 6.7%).</p><p><strong>Conclusions: </strong>Our findings introduce a personalized, 3D printed external helmet as a new option for cranial protection after decompressive craniectomy. The prototype provided reliable mechanical shielding, conformed closely to each patient's skull contour, and was well tolerated. By reducing physical risk, boosting confidence in appearance, and alleviating anxiety during the interval before cranioplasty, the device may bridge a critical safety and psycho-social gap in early rehabilitation.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"32"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210813/pdf/","citationCount":"0","resultStr":"{\"title\":\"A personalized 3D printed cranial shield using mirror-image modeling: design and clinical assessment.\",\"authors\":\"Zhongjie Shi, Zhengbo Yuan, Jie Chen, Hongwei Zhu, Hualing Huang, Zhanxiang Wang, Zirui Su\",\"doi\":\"10.1186/s41205-025-00289-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Patients who undergo decompressive craniectomy (DC) are at increased risk of head trauma due to postoperative cranial defects, which not only raise concerns about physical vulnerability but also negatively impact psychological well-being. Conventional protective strategies remain insufficient. This study aimed to develop a personalized, low-cost, three-dimensional (3D) printed external head protection device using mirror-image modeling, and to evaluate its performance in providing physical protection and improving patient-reported outcomes during the post-discharge period.</p><p><strong>Method: </strong>A prospective study was conducted involving 58 patients treated with DC between August 2023 and February 2025 across two neurosurgical centers. Participants were randomly assigned to an observation group (n = 28), who wore a custom-designed 3D printed protective device based on postoperative CT scans, or to a control group (n = 30) without special protective measures. A custom questionnaire was used to assess satisfaction with appearance, willingness to engage in social activities, and fear of accidental impact at weeks 1, 4, and 8 post-discharge. Objective indicators such as fall events, adverse reactions, and device integrity were also recorded.</p><p><strong>Results: </strong>The 3D printed models demonstrated good anatomical fit and structural reliability. At weeks 4 and 8, the observation group showed significantly higher Visual Analog Scale (VAS) scores compared to the control group (P = 0.014 and P = 0.002, respectively), with continuous improvement over time (P < 0.05). The average daily usage time of the device was 4.4 ± 1.2 h. No cases of skin irritation or pressure injuries were reported. One patient in the observation group experienced a fall that caused a minor device crack but no head injury (fall rate: 3.6%). In the control group, two patients fell without head trauma (fall rate: 6.7%).</p><p><strong>Conclusions: </strong>Our findings introduce a personalized, 3D printed external helmet as a new option for cranial protection after decompressive craniectomy. The prototype provided reliable mechanical shielding, conformed closely to each patient's skull contour, and was well tolerated. By reducing physical risk, boosting confidence in appearance, and alleviating anxiety during the interval before cranioplasty, the device may bridge a critical safety and psycho-social gap in early rehabilitation.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":\"11 1\",\"pages\":\"32\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210813/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-025-00289-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-025-00289-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:行减压颅骨切除术(DC)的患者由于术后颅骨缺损而增加了头部创伤的风险,这不仅引起了对身体脆弱性的担忧,而且对心理健康产生了负面影响。传统的保护策略仍然不够。本研究旨在利用镜像建模技术开发一种个性化、低成本、三维(3D)打印的头部外部保护装置,并评估其在提供物理保护和改善出院后患者报告结果方面的性能。方法:对两家神经外科中心在2023年8月至2025年2月间接受DC治疗的58例患者进行前瞻性研究。参与者被随机分配到观察组(n = 28)和对照组(n = 30),观察组(n = 28)佩戴基于术后CT扫描定制的3D打印保护装置,对照组(n = 30)没有特殊的保护措施。在出院后第1、4和8周,采用自定义问卷评估患者对外表的满意度、参与社会活动的意愿和对意外撞击的恐惧。还记录了跌倒事件、不良反应和器械完整性等客观指标。结果:3D打印模型具有良好的解剖贴合性和结构可靠性。在第4周和第8周,观察组的视觉模拟量表(VAS)评分明显高于对照组(P = 0.014和P = 0.002),并随着时间的推移持续改善(P结论:我们的研究结果引入了个性化的3D打印外头盔作为颅骨减压切除术后颅骨保护的新选择。该原型提供了可靠的机械屏蔽,与每位患者的颅骨轮廓紧密吻合,并且耐受性良好。通过降低身体风险,增强对外表的信心,减轻颅骨成形术前的焦虑,该设备可能在早期康复中弥合关键的安全和心理社会差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A personalized 3D printed cranial shield using mirror-image modeling: design and clinical assessment.

Background: Patients who undergo decompressive craniectomy (DC) are at increased risk of head trauma due to postoperative cranial defects, which not only raise concerns about physical vulnerability but also negatively impact psychological well-being. Conventional protective strategies remain insufficient. This study aimed to develop a personalized, low-cost, three-dimensional (3D) printed external head protection device using mirror-image modeling, and to evaluate its performance in providing physical protection and improving patient-reported outcomes during the post-discharge period.

Method: A prospective study was conducted involving 58 patients treated with DC between August 2023 and February 2025 across two neurosurgical centers. Participants were randomly assigned to an observation group (n = 28), who wore a custom-designed 3D printed protective device based on postoperative CT scans, or to a control group (n = 30) without special protective measures. A custom questionnaire was used to assess satisfaction with appearance, willingness to engage in social activities, and fear of accidental impact at weeks 1, 4, and 8 post-discharge. Objective indicators such as fall events, adverse reactions, and device integrity were also recorded.

Results: The 3D printed models demonstrated good anatomical fit and structural reliability. At weeks 4 and 8, the observation group showed significantly higher Visual Analog Scale (VAS) scores compared to the control group (P = 0.014 and P = 0.002, respectively), with continuous improvement over time (P < 0.05). The average daily usage time of the device was 4.4 ± 1.2 h. No cases of skin irritation or pressure injuries were reported. One patient in the observation group experienced a fall that caused a minor device crack but no head injury (fall rate: 3.6%). In the control group, two patients fell without head trauma (fall rate: 6.7%).

Conclusions: Our findings introduce a personalized, 3D printed external helmet as a new option for cranial protection after decompressive craniectomy. The prototype provided reliable mechanical shielding, conformed closely to each patient's skull contour, and was well tolerated. By reducing physical risk, boosting confidence in appearance, and alleviating anxiety during the interval before cranioplasty, the device may bridge a critical safety and psycho-social gap in early rehabilitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信