Inês L S Delgado, Bruno Carmona, Sofia Nolasco, Rita Marques, João Gonçalves, Helena Soares
{"title":"微管蛋白乙酰化:微管功能的关键调节因子。","authors":"Inês L S Delgado, Bruno Carmona, Sofia Nolasco, Rita Marques, João Gonçalves, Helena Soares","doi":"10.1007/978-3-031-91459-1_4","DOIUrl":null,"url":null,"abstract":"<p><p>The cytoskeleton is conserved throughout the eukaryotic lineage and consists of a complex dynamic network mainly composed of three distinct polymers: microtubules (MTs), actin filaments, and intermediate filaments. MTs are polymers of α/β-tubulin heterodimers, playing a myriad of distinct cellular functions and are the main components of complex structures like the mitotic spindle, cilia, and centrioles. Post-translational modifications (PTMs) regulate the function and increase the complexity of the α/β-tubulin heterodimer pools. One of the PTMs that has been extensively studied is the acetylation of lysine 40 (K40) on α-tubulin, which specifically occurs inside the MT lumen.Acetylation plays a crucial role in controlling the stability and function of MTs, in response to signals from within and outside the cell. It impacts the cytoplasm's 3D arrangement and important cellular activities like intracellular transport, cell division, polarity, and migration. Recent research has also emphasized the significance of this PTM in regulating the mechanical properties of MTs and cellular sensing. The levels and activity of MT acetyltransferases and deacetylases are tightly regulated through various transcriptional, post-transcriptional, and post-translational mechanisms, including miRNAs, phosphorylation, protein-protein interactions, and regulated localization between the nucleus and cytoplasm. These regulatory processes involve components of diverse signaling pathways, and their deregulation has been implicated in numerous diseases, including neurological disorders, cancer, and cardiac conditions.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"75 ","pages":"91-140"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tubulin Acetylation: A Critical Regulator of Microtubule Function.\",\"authors\":\"Inês L S Delgado, Bruno Carmona, Sofia Nolasco, Rita Marques, João Gonçalves, Helena Soares\",\"doi\":\"10.1007/978-3-031-91459-1_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cytoskeleton is conserved throughout the eukaryotic lineage and consists of a complex dynamic network mainly composed of three distinct polymers: microtubules (MTs), actin filaments, and intermediate filaments. MTs are polymers of α/β-tubulin heterodimers, playing a myriad of distinct cellular functions and are the main components of complex structures like the mitotic spindle, cilia, and centrioles. Post-translational modifications (PTMs) regulate the function and increase the complexity of the α/β-tubulin heterodimer pools. One of the PTMs that has been extensively studied is the acetylation of lysine 40 (K40) on α-tubulin, which specifically occurs inside the MT lumen.Acetylation plays a crucial role in controlling the stability and function of MTs, in response to signals from within and outside the cell. It impacts the cytoplasm's 3D arrangement and important cellular activities like intracellular transport, cell division, polarity, and migration. Recent research has also emphasized the significance of this PTM in regulating the mechanical properties of MTs and cellular sensing. The levels and activity of MT acetyltransferases and deacetylases are tightly regulated through various transcriptional, post-transcriptional, and post-translational mechanisms, including miRNAs, phosphorylation, protein-protein interactions, and regulated localization between the nucleus and cytoplasm. These regulatory processes involve components of diverse signaling pathways, and their deregulation has been implicated in numerous diseases, including neurological disorders, cancer, and cardiac conditions.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":\"75 \",\"pages\":\"91-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-91459-1_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-91459-1_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Tubulin Acetylation: A Critical Regulator of Microtubule Function.
The cytoskeleton is conserved throughout the eukaryotic lineage and consists of a complex dynamic network mainly composed of three distinct polymers: microtubules (MTs), actin filaments, and intermediate filaments. MTs are polymers of α/β-tubulin heterodimers, playing a myriad of distinct cellular functions and are the main components of complex structures like the mitotic spindle, cilia, and centrioles. Post-translational modifications (PTMs) regulate the function and increase the complexity of the α/β-tubulin heterodimer pools. One of the PTMs that has been extensively studied is the acetylation of lysine 40 (K40) on α-tubulin, which specifically occurs inside the MT lumen.Acetylation plays a crucial role in controlling the stability and function of MTs, in response to signals from within and outside the cell. It impacts the cytoplasm's 3D arrangement and important cellular activities like intracellular transport, cell division, polarity, and migration. Recent research has also emphasized the significance of this PTM in regulating the mechanical properties of MTs and cellular sensing. The levels and activity of MT acetyltransferases and deacetylases are tightly regulated through various transcriptional, post-transcriptional, and post-translational mechanisms, including miRNAs, phosphorylation, protein-protein interactions, and regulated localization between the nucleus and cytoplasm. These regulatory processes involve components of diverse signaling pathways, and their deregulation has been implicated in numerous diseases, including neurological disorders, cancer, and cardiac conditions.
期刊介绍:
Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.