{"title":"突出蛋白-2/FBXO22/BACH1轴保护骨髓间充质干细胞免受thbhp诱导的铁下垂和改善椎间盘退变。","authors":"Yuzhu Xu, Lele Zhang, Mingliang Ji, Jun Lu","doi":"10.1186/s13287-025-04453-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Our preliminary research has revealed that Prominin-2 overexpression effectively guarded against oxidative stress (OS)-induced ferroptosis by decreasing BTB and CNC homolog 1 (BACH1) expression, thus promoting bone marrow mesenchymal stem cells (BMSCs) survival under the OS microenvironments in degenerative discs.</p><p><strong>Methods: </strong>In this study, we probed how Prominin-2 controls the BACH1 expression in OS-induced BMSC ferroptosis. We then evaluated the efficiency of targeted Prominin-2/BACH1 pathway in BMSCs in treating degenerative nucleus pulposus cells (NPCs) and intervertebral disc degeneration (IVDD).</p><p><strong>Results: </strong>Using lentivirus infection and Western Blot, we observed that F-box only protein 22 (FBXO22) levels decreased in OS-induced BMSCs while overexpressing Prominin-2 restored its expression and pharmacological inhibition of FBXO22 impaired Prominin-2-mediated BACH1 degradation. The pull-down assay further confirmed the essential role of FBXO22 in the degradation of BACH1 promoted by Prominin-2. FBXO22 overexpression suppressed BMSCs' ferroptosis, and FBXO22 activity enhancer TBE56 (biotinylated TBE31) could further improve Prominin-2-overexpressed BMSCs' viability under OS circumstances. Finally, in vitro co-culture and in vivo studies illustrated that engraftment of Prominin-2-overexpressed BMSCs pre-treated by TBE56 enhanced the treatment efficiency of BMSCs for degenerative NPCs and rats' IVDD.</p><p><strong>Conclusions: </strong>Our data proposed a novel treatment strategy targeting the ferroptosis of BMSCs for treating IVDD by regulating FBXO22 in Prominin-2-overexpressed BMSCs.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"340"},"PeriodicalIF":7.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220210/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prominin-2/FBXO22/BACH1 axis protects bone marrow mesenchymal stem cells against TBHP-induced ferroptosis and ameliorates intervertebral disc degeneration.\",\"authors\":\"Yuzhu Xu, Lele Zhang, Mingliang Ji, Jun Lu\",\"doi\":\"10.1186/s13287-025-04453-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Our preliminary research has revealed that Prominin-2 overexpression effectively guarded against oxidative stress (OS)-induced ferroptosis by decreasing BTB and CNC homolog 1 (BACH1) expression, thus promoting bone marrow mesenchymal stem cells (BMSCs) survival under the OS microenvironments in degenerative discs.</p><p><strong>Methods: </strong>In this study, we probed how Prominin-2 controls the BACH1 expression in OS-induced BMSC ferroptosis. We then evaluated the efficiency of targeted Prominin-2/BACH1 pathway in BMSCs in treating degenerative nucleus pulposus cells (NPCs) and intervertebral disc degeneration (IVDD).</p><p><strong>Results: </strong>Using lentivirus infection and Western Blot, we observed that F-box only protein 22 (FBXO22) levels decreased in OS-induced BMSCs while overexpressing Prominin-2 restored its expression and pharmacological inhibition of FBXO22 impaired Prominin-2-mediated BACH1 degradation. The pull-down assay further confirmed the essential role of FBXO22 in the degradation of BACH1 promoted by Prominin-2. FBXO22 overexpression suppressed BMSCs' ferroptosis, and FBXO22 activity enhancer TBE56 (biotinylated TBE31) could further improve Prominin-2-overexpressed BMSCs' viability under OS circumstances. Finally, in vitro co-culture and in vivo studies illustrated that engraftment of Prominin-2-overexpressed BMSCs pre-treated by TBE56 enhanced the treatment efficiency of BMSCs for degenerative NPCs and rats' IVDD.</p><p><strong>Conclusions: </strong>Our data proposed a novel treatment strategy targeting the ferroptosis of BMSCs for treating IVDD by regulating FBXO22 in Prominin-2-overexpressed BMSCs.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"16 1\",\"pages\":\"340\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220210/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-025-04453-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04453-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Prominin-2/FBXO22/BACH1 axis protects bone marrow mesenchymal stem cells against TBHP-induced ferroptosis and ameliorates intervertebral disc degeneration.
Background: Our preliminary research has revealed that Prominin-2 overexpression effectively guarded against oxidative stress (OS)-induced ferroptosis by decreasing BTB and CNC homolog 1 (BACH1) expression, thus promoting bone marrow mesenchymal stem cells (BMSCs) survival under the OS microenvironments in degenerative discs.
Methods: In this study, we probed how Prominin-2 controls the BACH1 expression in OS-induced BMSC ferroptosis. We then evaluated the efficiency of targeted Prominin-2/BACH1 pathway in BMSCs in treating degenerative nucleus pulposus cells (NPCs) and intervertebral disc degeneration (IVDD).
Results: Using lentivirus infection and Western Blot, we observed that F-box only protein 22 (FBXO22) levels decreased in OS-induced BMSCs while overexpressing Prominin-2 restored its expression and pharmacological inhibition of FBXO22 impaired Prominin-2-mediated BACH1 degradation. The pull-down assay further confirmed the essential role of FBXO22 in the degradation of BACH1 promoted by Prominin-2. FBXO22 overexpression suppressed BMSCs' ferroptosis, and FBXO22 activity enhancer TBE56 (biotinylated TBE31) could further improve Prominin-2-overexpressed BMSCs' viability under OS circumstances. Finally, in vitro co-culture and in vivo studies illustrated that engraftment of Prominin-2-overexpressed BMSCs pre-treated by TBE56 enhanced the treatment efficiency of BMSCs for degenerative NPCs and rats' IVDD.
Conclusions: Our data proposed a novel treatment strategy targeting the ferroptosis of BMSCs for treating IVDD by regulating FBXO22 in Prominin-2-overexpressed BMSCs.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.