{"title":"利用网络毒理学和分子对接技术鉴定器官移植受者他克莫司诱发震颤的核心靶点和通路。","authors":"Chao Liu, Qian Chen, Fu Yan, Yulin Niu","doi":"10.1038/s41598-025-02381-5","DOIUrl":null,"url":null,"abstract":"<p><p>Tacrolimus, the most commonly prescribed immunosuppressant following organ transplantation, is associated with various neurotoxic effects, notably tremor, which significantly impacts the quality of life of recipients. The precise mechanisms underlying tacrolimus-induced tremor remain unclear. To investigate this, we employed network toxicology and molecular docking methodologies to identify potential targets and pathways. The SMILES representation of tacrolimus was retrieved from the PubChem database, and toxicity predictions were performed using ProTox-3.0 and ADMETlab 3.0. Targets related to tacrolimus and tremor-associated diseases were identified from public databases. Protein-protein interaction networks and functional enrichment analyses were conducted using STRING and Cytoscape. Molecular docking studies were carried out with CB-Dock2. A total of 43 potential targets associated with tacrolimus exposure and tremor were identified, out of which five core targets were filtered through STRING and Cytoscape analyses: AKT1, GBA, SCN8A, SCN2A, and SCN4A. Functional enrichment analysis highlighted several critical pathways implicated in tacrolimus-induced tremor, including the Dopaminergic synapse, Parkinson's disease, Rap1 signaling pathway, Spinocerebellar ataxia, and Apoptosis. The results of molecular docking indicated that tacrolimus exhibits the strongest binding affinity toward SCN8A and SCN2A among the core targets. This study suggests that tacrolimus-induced tremor may be closely linked to parkinsonian tremor and provides a theoretical foundation for understanding the neurotoxic effects of tacrolimus. Given the limited research in network toxicology on the specific molecular mechanisms involved, further animal studies are warranted to elucidate these mechanisms in detail.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"22817"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using network toxicology and molecular docking to identify core targets and pathways underlying tacrolimus-induced tremor in organ transplant recipients.\",\"authors\":\"Chao Liu, Qian Chen, Fu Yan, Yulin Niu\",\"doi\":\"10.1038/s41598-025-02381-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tacrolimus, the most commonly prescribed immunosuppressant following organ transplantation, is associated with various neurotoxic effects, notably tremor, which significantly impacts the quality of life of recipients. The precise mechanisms underlying tacrolimus-induced tremor remain unclear. To investigate this, we employed network toxicology and molecular docking methodologies to identify potential targets and pathways. The SMILES representation of tacrolimus was retrieved from the PubChem database, and toxicity predictions were performed using ProTox-3.0 and ADMETlab 3.0. Targets related to tacrolimus and tremor-associated diseases were identified from public databases. Protein-protein interaction networks and functional enrichment analyses were conducted using STRING and Cytoscape. Molecular docking studies were carried out with CB-Dock2. A total of 43 potential targets associated with tacrolimus exposure and tremor were identified, out of which five core targets were filtered through STRING and Cytoscape analyses: AKT1, GBA, SCN8A, SCN2A, and SCN4A. Functional enrichment analysis highlighted several critical pathways implicated in tacrolimus-induced tremor, including the Dopaminergic synapse, Parkinson's disease, Rap1 signaling pathway, Spinocerebellar ataxia, and Apoptosis. The results of molecular docking indicated that tacrolimus exhibits the strongest binding affinity toward SCN8A and SCN2A among the core targets. This study suggests that tacrolimus-induced tremor may be closely linked to parkinsonian tremor and provides a theoretical foundation for understanding the neurotoxic effects of tacrolimus. Given the limited research in network toxicology on the specific molecular mechanisms involved, further animal studies are warranted to elucidate these mechanisms in detail.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"22817\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-02381-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-02381-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Using network toxicology and molecular docking to identify core targets and pathways underlying tacrolimus-induced tremor in organ transplant recipients.
Tacrolimus, the most commonly prescribed immunosuppressant following organ transplantation, is associated with various neurotoxic effects, notably tremor, which significantly impacts the quality of life of recipients. The precise mechanisms underlying tacrolimus-induced tremor remain unclear. To investigate this, we employed network toxicology and molecular docking methodologies to identify potential targets and pathways. The SMILES representation of tacrolimus was retrieved from the PubChem database, and toxicity predictions were performed using ProTox-3.0 and ADMETlab 3.0. Targets related to tacrolimus and tremor-associated diseases were identified from public databases. Protein-protein interaction networks and functional enrichment analyses were conducted using STRING and Cytoscape. Molecular docking studies were carried out with CB-Dock2. A total of 43 potential targets associated with tacrolimus exposure and tremor were identified, out of which five core targets were filtered through STRING and Cytoscape analyses: AKT1, GBA, SCN8A, SCN2A, and SCN4A. Functional enrichment analysis highlighted several critical pathways implicated in tacrolimus-induced tremor, including the Dopaminergic synapse, Parkinson's disease, Rap1 signaling pathway, Spinocerebellar ataxia, and Apoptosis. The results of molecular docking indicated that tacrolimus exhibits the strongest binding affinity toward SCN8A and SCN2A among the core targets. This study suggests that tacrolimus-induced tremor may be closely linked to parkinsonian tremor and provides a theoretical foundation for understanding the neurotoxic effects of tacrolimus. Given the limited research in network toxicology on the specific molecular mechanisms involved, further animal studies are warranted to elucidate these mechanisms in detail.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.