{"title":"太阳质子事件中被破坏的急流及其对飞行时间的影响。","authors":"Xiaoheng Xu, Yi Wang, Fengsi Wei, Xueshang Feng, Manhui Bo, Hongwu Tang, Diansheng Wang, Lei Bian, Boyi Wang, Pingbing Zuo, Chaowei Jiang, Xiaojun Xu, Zilu Zhou, Zeng Li, Peng Zou, Yun Li, Liang Zeng, Xiaoxing Zhu","doi":"10.1038/s41598-025-07137-9","DOIUrl":null,"url":null,"abstract":"<p><p>The long-chain effects of eruptive solar activities on Earth's magnetosphere, ionosphere, and the mid-to-lower atmospheric circulation are an important theoretical research topic in the fields of space weather and atmospheric science. Understanding the impact of space weather on aviation holds substantial economic value. It is well-known that flight times for polar routes may increase during solar proton events (SPEs) due to the necessity of avoiding high-energy particles. However, changes in atmospheric circulation due to SPEs and their impact on flight times have not been reported yet. This study systematically analyzed 15 pairs of representative international air routes, comprising a total of 16,037 flight records affected by the polar jet stream between 2015 and 2019. An unpaired two-sample two-tailed t-test revealed that 86.67% of westbound flights had shorter durations, while 86.67% of eastbound flights had longer durations during SPEs compared to quiet periods, with an average change of approximately 7 min. Further investigation into 42 SPEs during an entire solar cycle (11 years) indicates that the poleward shift of the polar jet stream, associated with high-energy particle precipitation, is the fundamental reason for the asymmetrical changes in flight times. This is the first report detailing the impact of SPEs on atmospheric circulation and flight times. Our findings reveal the long-chain mechanism by which SPEs directly influence the circulation of Earth's lower atmosphere. These results are also crucial for aviation, as they can help airlines optimize routes, reduce fuel costs, and contribute to climate change mitigation efforts.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"22969"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The disrupted jet stream and its influence on flight time during solar proton events.\",\"authors\":\"Xiaoheng Xu, Yi Wang, Fengsi Wei, Xueshang Feng, Manhui Bo, Hongwu Tang, Diansheng Wang, Lei Bian, Boyi Wang, Pingbing Zuo, Chaowei Jiang, Xiaojun Xu, Zilu Zhou, Zeng Li, Peng Zou, Yun Li, Liang Zeng, Xiaoxing Zhu\",\"doi\":\"10.1038/s41598-025-07137-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The long-chain effects of eruptive solar activities on Earth's magnetosphere, ionosphere, and the mid-to-lower atmospheric circulation are an important theoretical research topic in the fields of space weather and atmospheric science. Understanding the impact of space weather on aviation holds substantial economic value. It is well-known that flight times for polar routes may increase during solar proton events (SPEs) due to the necessity of avoiding high-energy particles. However, changes in atmospheric circulation due to SPEs and their impact on flight times have not been reported yet. This study systematically analyzed 15 pairs of representative international air routes, comprising a total of 16,037 flight records affected by the polar jet stream between 2015 and 2019. An unpaired two-sample two-tailed t-test revealed that 86.67% of westbound flights had shorter durations, while 86.67% of eastbound flights had longer durations during SPEs compared to quiet periods, with an average change of approximately 7 min. Further investigation into 42 SPEs during an entire solar cycle (11 years) indicates that the poleward shift of the polar jet stream, associated with high-energy particle precipitation, is the fundamental reason for the asymmetrical changes in flight times. This is the first report detailing the impact of SPEs on atmospheric circulation and flight times. Our findings reveal the long-chain mechanism by which SPEs directly influence the circulation of Earth's lower atmosphere. These results are also crucial for aviation, as they can help airlines optimize routes, reduce fuel costs, and contribute to climate change mitigation efforts.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"22969\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-07137-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07137-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The disrupted jet stream and its influence on flight time during solar proton events.
The long-chain effects of eruptive solar activities on Earth's magnetosphere, ionosphere, and the mid-to-lower atmospheric circulation are an important theoretical research topic in the fields of space weather and atmospheric science. Understanding the impact of space weather on aviation holds substantial economic value. It is well-known that flight times for polar routes may increase during solar proton events (SPEs) due to the necessity of avoiding high-energy particles. However, changes in atmospheric circulation due to SPEs and their impact on flight times have not been reported yet. This study systematically analyzed 15 pairs of representative international air routes, comprising a total of 16,037 flight records affected by the polar jet stream between 2015 and 2019. An unpaired two-sample two-tailed t-test revealed that 86.67% of westbound flights had shorter durations, while 86.67% of eastbound flights had longer durations during SPEs compared to quiet periods, with an average change of approximately 7 min. Further investigation into 42 SPEs during an entire solar cycle (11 years) indicates that the poleward shift of the polar jet stream, associated with high-energy particle precipitation, is the fundamental reason for the asymmetrical changes in flight times. This is the first report detailing the impact of SPEs on atmospheric circulation and flight times. Our findings reveal the long-chain mechanism by which SPEs directly influence the circulation of Earth's lower atmosphere. These results are also crucial for aviation, as they can help airlines optimize routes, reduce fuel costs, and contribute to climate change mitigation efforts.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.