Anas Belouali, Christopher Kitchen, Ayah Zirikly, Paul Nestadt, Holly C Wilcox, Hadi Kharrazi
{"title":"使用深嵌入聚类识别和表征自杀死亡亚型。","authors":"Anas Belouali, Christopher Kitchen, Ayah Zirikly, Paul Nestadt, Holly C Wilcox, Hadi Kharrazi","doi":"10.1038/s41598-025-07007-4","DOIUrl":null,"url":null,"abstract":"<p><p>Subtypes of suicide decedents have not been studied at a population level using linked clinical and public health surveillance records. Identifying suicide subtypes can help facilitate the development and deployment of population-level prevention strategies. This retrospective study uses the Maryland Suicide Data Warehouse (MSDW). The analyses included 848 individuals who died by suicide as well as 4,161 individuals who died by accident in the state of Maryland between January 1st, 2016, and December 31st, 2019. These individuals had electronic health records from Johns Hopkins Medical Institutes and statewide hospital discharge data. We employed deep embedded clustering and evaluated its performance against traditional clustering approaches. We evaluated different numbers of clusters (k = 2 to 10) and assessed clustering performance using stability metrics, achieving a cross-validated prediction strength of 0.94. We then performed cluster characterization and assessed cluster stability up to 1 year before suicide death. We identified four distinct suicide profiles. Profile 1 (23.2% of suicide cases) included older individuals with high comorbid conditions. Profile 2 (19.2%) was characterized by psychiatric illness, the highest healthcare utilization, and significant social needs. Profile 3 (25.4%) consisted of younger individuals with psychiatric illness, no recorded social needs, and the highest percentage of Medicaid patients. Profile 4 (32.2%) included less clinically engaged individuals with the fewest healthcare visits. Our findings show the effective use of clustering methods to identify meaningful and stable suicide decedent profiles, revealing significant demographic and clinical differences. The identified subtypes can inform population-level suicide prevention strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23069"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying and characterizing suicide decedent subtypes using deep embedded clustering.\",\"authors\":\"Anas Belouali, Christopher Kitchen, Ayah Zirikly, Paul Nestadt, Holly C Wilcox, Hadi Kharrazi\",\"doi\":\"10.1038/s41598-025-07007-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subtypes of suicide decedents have not been studied at a population level using linked clinical and public health surveillance records. Identifying suicide subtypes can help facilitate the development and deployment of population-level prevention strategies. This retrospective study uses the Maryland Suicide Data Warehouse (MSDW). The analyses included 848 individuals who died by suicide as well as 4,161 individuals who died by accident in the state of Maryland between January 1st, 2016, and December 31st, 2019. These individuals had electronic health records from Johns Hopkins Medical Institutes and statewide hospital discharge data. We employed deep embedded clustering and evaluated its performance against traditional clustering approaches. We evaluated different numbers of clusters (k = 2 to 10) and assessed clustering performance using stability metrics, achieving a cross-validated prediction strength of 0.94. We then performed cluster characterization and assessed cluster stability up to 1 year before suicide death. We identified four distinct suicide profiles. Profile 1 (23.2% of suicide cases) included older individuals with high comorbid conditions. Profile 2 (19.2%) was characterized by psychiatric illness, the highest healthcare utilization, and significant social needs. Profile 3 (25.4%) consisted of younger individuals with psychiatric illness, no recorded social needs, and the highest percentage of Medicaid patients. Profile 4 (32.2%) included less clinically engaged individuals with the fewest healthcare visits. Our findings show the effective use of clustering methods to identify meaningful and stable suicide decedent profiles, revealing significant demographic and clinical differences. The identified subtypes can inform population-level suicide prevention strategies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"23069\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-07007-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07007-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Identifying and characterizing suicide decedent subtypes using deep embedded clustering.
Subtypes of suicide decedents have not been studied at a population level using linked clinical and public health surveillance records. Identifying suicide subtypes can help facilitate the development and deployment of population-level prevention strategies. This retrospective study uses the Maryland Suicide Data Warehouse (MSDW). The analyses included 848 individuals who died by suicide as well as 4,161 individuals who died by accident in the state of Maryland between January 1st, 2016, and December 31st, 2019. These individuals had electronic health records from Johns Hopkins Medical Institutes and statewide hospital discharge data. We employed deep embedded clustering and evaluated its performance against traditional clustering approaches. We evaluated different numbers of clusters (k = 2 to 10) and assessed clustering performance using stability metrics, achieving a cross-validated prediction strength of 0.94. We then performed cluster characterization and assessed cluster stability up to 1 year before suicide death. We identified four distinct suicide profiles. Profile 1 (23.2% of suicide cases) included older individuals with high comorbid conditions. Profile 2 (19.2%) was characterized by psychiatric illness, the highest healthcare utilization, and significant social needs. Profile 3 (25.4%) consisted of younger individuals with psychiatric illness, no recorded social needs, and the highest percentage of Medicaid patients. Profile 4 (32.2%) included less clinically engaged individuals with the fewest healthcare visits. Our findings show the effective use of clustering methods to identify meaningful and stable suicide decedent profiles, revealing significant demographic and clinical differences. The identified subtypes can inform population-level suicide prevention strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.