混凝土与泡沫水泥复合材料单轴压缩力学性能试验研究。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yue Cao, Zheng Kong, Yadong Zheng, Zhijun Xu, Lianhai Tai, Chong Li, Peng Wu
{"title":"混凝土与泡沫水泥复合材料单轴压缩力学性能试验研究。","authors":"Yue Cao, Zheng Kong, Yadong Zheng, Zhijun Xu, Lianhai Tai, Chong Li, Peng Wu","doi":"10.1038/s41598-025-07304-y","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the mechanical properties of concrete-foamed cement composite specimens (C-FCCS), uniaxial compression tests were conducted on composite specimens with varying proportions and strengths of foamed cement. The analysis focused on the peak compressive strength, peak strain, macroscopic failure morphology, and acoustic emission (AE) characteristics of C-FCCS. The experimental results indicate that the peak compressive strength of C-FCCS exhibits a negative correlation with the proportion of foamed cement and a positive correlation with the proportion of concrete. At foamed cement proportions of 10% and 20%, the peak compressive strength of C-FCCS is predominantly governed by concrete, with AE energy concentrated primarily during the initial loading phase and near the peak stress. In contrast, at foamed cement proportions ranging from 30 to 50%, the peak compressive strength is dominated by foamed cement, with AE energy concentrated around the peak stress. The peak strain of C-FCCS shows a trend of initially increasing and then decreasing with the increase in height ratio (Height ratio = Foamed cement height/C-FCCS height). Under different height ratios, the peak strain of C-FCCS is approximately 175.61-558.13% of that of pure concrete specimens. Furthermore, variations in the strength of foamed cement have a minimal impact on the peak compressive strength of C-FCCS but significantly affect the peak strain. The peak compressive strength of C-FCCS is about 77.67-83.87% of that of pure concrete specimens, while the peak strain ranges from 128.46 to 361.38%. Lastly, the macroscopic failure of C-FCCS is primarily characterized by tensile failure, with shear failure commonly observed at the edges and corner interfaces of C-FCCS.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"22975"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental study on mechanical properties of composite materials of concrete and foamed cement under uniaxial compression.\",\"authors\":\"Yue Cao, Zheng Kong, Yadong Zheng, Zhijun Xu, Lianhai Tai, Chong Li, Peng Wu\",\"doi\":\"10.1038/s41598-025-07304-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the mechanical properties of concrete-foamed cement composite specimens (C-FCCS), uniaxial compression tests were conducted on composite specimens with varying proportions and strengths of foamed cement. The analysis focused on the peak compressive strength, peak strain, macroscopic failure morphology, and acoustic emission (AE) characteristics of C-FCCS. The experimental results indicate that the peak compressive strength of C-FCCS exhibits a negative correlation with the proportion of foamed cement and a positive correlation with the proportion of concrete. At foamed cement proportions of 10% and 20%, the peak compressive strength of C-FCCS is predominantly governed by concrete, with AE energy concentrated primarily during the initial loading phase and near the peak stress. In contrast, at foamed cement proportions ranging from 30 to 50%, the peak compressive strength is dominated by foamed cement, with AE energy concentrated around the peak stress. The peak strain of C-FCCS shows a trend of initially increasing and then decreasing with the increase in height ratio (Height ratio = Foamed cement height/C-FCCS height). Under different height ratios, the peak strain of C-FCCS is approximately 175.61-558.13% of that of pure concrete specimens. Furthermore, variations in the strength of foamed cement have a minimal impact on the peak compressive strength of C-FCCS but significantly affect the peak strain. The peak compressive strength of C-FCCS is about 77.67-83.87% of that of pure concrete specimens, while the peak strain ranges from 128.46 to 361.38%. Lastly, the macroscopic failure of C-FCCS is primarily characterized by tensile failure, with shear failure commonly observed at the edges and corner interfaces of C-FCCS.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"22975\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-07304-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07304-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为研究混凝土-泡沫水泥复合试件(C-FCCS)的力学性能,对不同比例和强度的泡沫水泥复合试件进行了单轴压缩试验。分析了C-FCCS的峰值抗压强度、峰值应变、宏观破坏形态和声发射(AE)特征。试验结果表明,C-FCCS的峰值抗压强度与泡沫水泥掺量呈负相关,与混凝土掺量呈正相关。在泡沫水泥掺量为10%和20%时,C-FCCS的峰值抗压强度主要受混凝土控制,声发射能量主要集中在初始加载阶段和峰值应力附近。而在泡沫水泥掺量为30% ~ 50%时,峰值抗压强度以泡沫水泥为主,声发射能量集中在峰值应力附近。随着高度比(高度比=发泡水泥高度/C-FCCS高度)的增加,C-FCCS的峰值应变呈现先增大后减小的趋势。在不同高度比下,C-FCCS的峰值应变约为纯混凝土试件的175.61 ~ 558.13%。此外,泡沫水泥强度的变化对C-FCCS的峰值抗压强度影响很小,但对峰值应变有显著影响。C-FCCS的峰值抗压强度约为纯混凝土试件的77.67 ~ 83.87%,峰值应变为128.46 ~ 361.38%。最后,C-FCCS的宏观破坏以拉伸破坏为主,边缘和边角界面处普遍存在剪切破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on mechanical properties of composite materials of concrete and foamed cement under uniaxial compression.

To investigate the mechanical properties of concrete-foamed cement composite specimens (C-FCCS), uniaxial compression tests were conducted on composite specimens with varying proportions and strengths of foamed cement. The analysis focused on the peak compressive strength, peak strain, macroscopic failure morphology, and acoustic emission (AE) characteristics of C-FCCS. The experimental results indicate that the peak compressive strength of C-FCCS exhibits a negative correlation with the proportion of foamed cement and a positive correlation with the proportion of concrete. At foamed cement proportions of 10% and 20%, the peak compressive strength of C-FCCS is predominantly governed by concrete, with AE energy concentrated primarily during the initial loading phase and near the peak stress. In contrast, at foamed cement proportions ranging from 30 to 50%, the peak compressive strength is dominated by foamed cement, with AE energy concentrated around the peak stress. The peak strain of C-FCCS shows a trend of initially increasing and then decreasing with the increase in height ratio (Height ratio = Foamed cement height/C-FCCS height). Under different height ratios, the peak strain of C-FCCS is approximately 175.61-558.13% of that of pure concrete specimens. Furthermore, variations in the strength of foamed cement have a minimal impact on the peak compressive strength of C-FCCS but significantly affect the peak strain. The peak compressive strength of C-FCCS is about 77.67-83.87% of that of pure concrete specimens, while the peak strain ranges from 128.46 to 361.38%. Lastly, the macroscopic failure of C-FCCS is primarily characterized by tensile failure, with shear failure commonly observed at the edges and corner interfaces of C-FCCS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信