Neo Moloi, Mothusi C Khumalo, Wonder P Nxumalo, Sphamandla E Mtambo, Nompumelelo P Mkhwanazi, Sizwe I Ndlovu
{"title":"结合OSMAC方法和非靶向代谢组学分析内生真菌Penicillium Rubens P03MB2中具有抗hiv -1活性的化合物。","authors":"Neo Moloi, Mothusi C Khumalo, Wonder P Nxumalo, Sphamandla E Mtambo, Nompumelelo P Mkhwanazi, Sizwe I Ndlovu","doi":"10.1038/s41598-025-08091-2","DOIUrl":null,"url":null,"abstract":"<p><p>The persistent burden of HIV-1 in Sub-Saharan Africa underscores the need for innovative treatments, as current antiretroviral therapies cannot eliminate latent proviral reservoirs and face challenges from multidrug-resistant strains. This study investigates the potential of Penicillium rubens P03MB2, an endophytic fungus from the Albizia adianthifolia plant, as a source of novel anti-HIV-1 compounds. The fungus was cultivated in various media (malt extract broth, oats, and rice), with oat media yielding crude extracts exhibiting significant anti-HIV-1 activity. Active fractions were further analyzed using an untargeted metabolomics and molecular networking approach, revealing clusters of secondary metabolites, including coumarins and other anti-HIV-1-associated compounds. A virtual screening workflow was employed to assess the binding affinities of these metabolites against HIV-1 protease. Furthermore, molecular dynamics simulations were used to analyze ligand-protein complex stability. Binding free energy calculations highlighted diosgenin as a promising candidate, with a binding free energy of -34.59 kcal/mol, outperforming the co-crystallized ligand ORV. This research demonstrates the potential of secondary metabolites from Penicillium rubens as novel anti-HIV-1 agents, offering a foundation for further developing effective antiviral therapies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"22746"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216044/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining an OSMAC approach and untargeted metabolomics to profile compounds exhibiting anti-HIV-1 activities in an endophytic fungus, Penicillium Rubens P03MB2.\",\"authors\":\"Neo Moloi, Mothusi C Khumalo, Wonder P Nxumalo, Sphamandla E Mtambo, Nompumelelo P Mkhwanazi, Sizwe I Ndlovu\",\"doi\":\"10.1038/s41598-025-08091-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The persistent burden of HIV-1 in Sub-Saharan Africa underscores the need for innovative treatments, as current antiretroviral therapies cannot eliminate latent proviral reservoirs and face challenges from multidrug-resistant strains. This study investigates the potential of Penicillium rubens P03MB2, an endophytic fungus from the Albizia adianthifolia plant, as a source of novel anti-HIV-1 compounds. The fungus was cultivated in various media (malt extract broth, oats, and rice), with oat media yielding crude extracts exhibiting significant anti-HIV-1 activity. Active fractions were further analyzed using an untargeted metabolomics and molecular networking approach, revealing clusters of secondary metabolites, including coumarins and other anti-HIV-1-associated compounds. A virtual screening workflow was employed to assess the binding affinities of these metabolites against HIV-1 protease. Furthermore, molecular dynamics simulations were used to analyze ligand-protein complex stability. Binding free energy calculations highlighted diosgenin as a promising candidate, with a binding free energy of -34.59 kcal/mol, outperforming the co-crystallized ligand ORV. This research demonstrates the potential of secondary metabolites from Penicillium rubens as novel anti-HIV-1 agents, offering a foundation for further developing effective antiviral therapies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"22746\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216044/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-08091-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-08091-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Combining an OSMAC approach and untargeted metabolomics to profile compounds exhibiting anti-HIV-1 activities in an endophytic fungus, Penicillium Rubens P03MB2.
The persistent burden of HIV-1 in Sub-Saharan Africa underscores the need for innovative treatments, as current antiretroviral therapies cannot eliminate latent proviral reservoirs and face challenges from multidrug-resistant strains. This study investigates the potential of Penicillium rubens P03MB2, an endophytic fungus from the Albizia adianthifolia plant, as a source of novel anti-HIV-1 compounds. The fungus was cultivated in various media (malt extract broth, oats, and rice), with oat media yielding crude extracts exhibiting significant anti-HIV-1 activity. Active fractions were further analyzed using an untargeted metabolomics and molecular networking approach, revealing clusters of secondary metabolites, including coumarins and other anti-HIV-1-associated compounds. A virtual screening workflow was employed to assess the binding affinities of these metabolites against HIV-1 protease. Furthermore, molecular dynamics simulations were used to analyze ligand-protein complex stability. Binding free energy calculations highlighted diosgenin as a promising candidate, with a binding free energy of -34.59 kcal/mol, outperforming the co-crystallized ligand ORV. This research demonstrates the potential of secondary metabolites from Penicillium rubens as novel anti-HIV-1 agents, offering a foundation for further developing effective antiviral therapies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.