Huihui Han, Ye Zhao, Hao Jiang, Muxin Chen, Song Zhou, Zihan Lin, Xin Wang, Boman Mao, Xinyue Yang, Yuchun Li
{"title":"结合逐步多元回归和聚类联邦学习框架的风电齿轮油故障诊断方法。","authors":"Huihui Han, Ye Zhao, Hao Jiang, Muxin Chen, Song Zhou, Zihan Lin, Xin Wang, Boman Mao, Xinyue Yang, Yuchun Li","doi":"10.1038/s41598-025-06826-9","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven approaches demonstrate significant potential in accurately diagnosing faults in wind turbines. To enhance diagnostic performance, we introduce a clustered federated learning framework (CFLF) for wind gear oil diagnosis. Initially, a stepwise multivariate regression (SMR) model is introduced and optimized after data processing, which integrates multiscale features and an AIC-diagnosis feature. Subsequently, to tackle data heterogeneity among different indicators, a series of canonical correlation representations are extracted from the SMR models, and a combined model of CFLF method and SMR is proposed to assess the performance of gear oil. Actual data analysis of wind turbine gear oil showcase the superior performance of the proposed model over the single SMR model with higher prediction accuracy of 35.73%. This study provides a new technique for evaluating gear oil in the wind energy sector.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"22841"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219068/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel diagnosis methodology of gear oil for wind turbine combining Stepwise multivariate regression and clustered federated learning framework.\",\"authors\":\"Huihui Han, Ye Zhao, Hao Jiang, Muxin Chen, Song Zhou, Zihan Lin, Xin Wang, Boman Mao, Xinyue Yang, Yuchun Li\",\"doi\":\"10.1038/s41598-025-06826-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data-driven approaches demonstrate significant potential in accurately diagnosing faults in wind turbines. To enhance diagnostic performance, we introduce a clustered federated learning framework (CFLF) for wind gear oil diagnosis. Initially, a stepwise multivariate regression (SMR) model is introduced and optimized after data processing, which integrates multiscale features and an AIC-diagnosis feature. Subsequently, to tackle data heterogeneity among different indicators, a series of canonical correlation representations are extracted from the SMR models, and a combined model of CFLF method and SMR is proposed to assess the performance of gear oil. Actual data analysis of wind turbine gear oil showcase the superior performance of the proposed model over the single SMR model with higher prediction accuracy of 35.73%. This study provides a new technique for evaluating gear oil in the wind energy sector.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"22841\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-06826-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-06826-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A novel diagnosis methodology of gear oil for wind turbine combining Stepwise multivariate regression and clustered federated learning framework.
Data-driven approaches demonstrate significant potential in accurately diagnosing faults in wind turbines. To enhance diagnostic performance, we introduce a clustered federated learning framework (CFLF) for wind gear oil diagnosis. Initially, a stepwise multivariate regression (SMR) model is introduced and optimized after data processing, which integrates multiscale features and an AIC-diagnosis feature. Subsequently, to tackle data heterogeneity among different indicators, a series of canonical correlation representations are extracted from the SMR models, and a combined model of CFLF method and SMR is proposed to assess the performance of gear oil. Actual data analysis of wind turbine gear oil showcase the superior performance of the proposed model over the single SMR model with higher prediction accuracy of 35.73%. This study provides a new technique for evaluating gear oil in the wind energy sector.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.