Qi Li, Donghui Li, Yuanheng Zhao, Jianyong Zhang, Yan Liu, Guofang Fan, Fengping Yan, Desheng Chen, Muguang Wang
{"title":"一种基于随机相位调制的干涉式光纤振动传感器。","authors":"Qi Li, Donghui Li, Yuanheng Zhao, Jianyong Zhang, Yan Liu, Guofang Fan, Fengping Yan, Desheng Chen, Muguang Wang","doi":"10.1364/OL.566576","DOIUrl":null,"url":null,"abstract":"<p><p>A stable homodyne interferometric fiber optic vibration sensor is proposed and demonstrated by using a probe pulse, which is generated based on random phase modulation. The first half of the probe pulse is divided into three time slots. Each time slot is subjected to random and different phase modulation. The last half of the probe pulse is not modulated. An unequal-arm Michelson interferometer is used as the sensing unit of vibration sensor. By using a simple direct detection scheme, the interference signals of three time slots can be distinguished in the time domain. Two time slots' interference signals are selected and extracted as the signal to be demodulated. The vibration signal to be measured can be quantitatively measured by using ellipse fitting algorithm and arctangent algorithm. Compared with the traditional 3 × 3 coupler-based scheme, the system structure is simple and can form a large-scale sensor array. Moreover, the interference light signal in each time slot can provide multiple channels for averaging, resulting in a better demodulation signal-to-noise ratio (SNR) performance. By multi-channel averaging, the SNR is improved by at least 5.2 dB.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 13","pages":"4282-4285"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interferometric fiber optic vibration sensor based on random phase modulation.\",\"authors\":\"Qi Li, Donghui Li, Yuanheng Zhao, Jianyong Zhang, Yan Liu, Guofang Fan, Fengping Yan, Desheng Chen, Muguang Wang\",\"doi\":\"10.1364/OL.566576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A stable homodyne interferometric fiber optic vibration sensor is proposed and demonstrated by using a probe pulse, which is generated based on random phase modulation. The first half of the probe pulse is divided into three time slots. Each time slot is subjected to random and different phase modulation. The last half of the probe pulse is not modulated. An unequal-arm Michelson interferometer is used as the sensing unit of vibration sensor. By using a simple direct detection scheme, the interference signals of three time slots can be distinguished in the time domain. Two time slots' interference signals are selected and extracted as the signal to be demodulated. The vibration signal to be measured can be quantitatively measured by using ellipse fitting algorithm and arctangent algorithm. Compared with the traditional 3 × 3 coupler-based scheme, the system structure is simple and can form a large-scale sensor array. Moreover, the interference light signal in each time slot can provide multiple channels for averaging, resulting in a better demodulation signal-to-noise ratio (SNR) performance. By multi-channel averaging, the SNR is improved by at least 5.2 dB.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 13\",\"pages\":\"4282-4285\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.566576\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.566576","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
An interferometric fiber optic vibration sensor based on random phase modulation.
A stable homodyne interferometric fiber optic vibration sensor is proposed and demonstrated by using a probe pulse, which is generated based on random phase modulation. The first half of the probe pulse is divided into three time slots. Each time slot is subjected to random and different phase modulation. The last half of the probe pulse is not modulated. An unequal-arm Michelson interferometer is used as the sensing unit of vibration sensor. By using a simple direct detection scheme, the interference signals of three time slots can be distinguished in the time domain. Two time slots' interference signals are selected and extracted as the signal to be demodulated. The vibration signal to be measured can be quantitatively measured by using ellipse fitting algorithm and arctangent algorithm. Compared with the traditional 3 × 3 coupler-based scheme, the system structure is simple and can form a large-scale sensor array. Moreover, the interference light signal in each time slot can provide multiple channels for averaging, resulting in a better demodulation signal-to-noise ratio (SNR) performance. By multi-channel averaging, the SNR is improved by at least 5.2 dB.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.